Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran and Department of Optometry, Iran University of Medical Sciences, Tehran, Iran

3 Department of Optometry, Iran University of Medical Sciences, Tehran, Iran

4 Department of Optometry, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: We compared the wave amplitude of visually evoked potential (VEP) between patients with esotropic and anisometropic amblyopic eyes and a normal group.Methods: The wave amplitude of VEP was documented in 2 groups of persons with amblyopia (15 with esotropia and 28 with anisometropia) and 1 group of individuals with normal visual acuity (n, 15). The amplitude of P100 was recorded monocularly with different spatial frequencies.Results: Our statistical analysis revealed that the wave amplitude in the 2 groups with amblyopia was significantly decreased compared to that in the normal group (P<0.001). There was a significant difference regarding the amplitude in high spatial frequencies in both high- and low-contrast conditions between the groups with esotropia and anisometropia and the normal group (P<0.001). There were also significant differences in large check-size stimuli and low-contrast condition between the amblyopic groups with esotropia and anisometropia and the normal group (P=0.013 and P=0.044, respectively). In large check-size stimuli and high-contrast condition, a significant difference was indicated only in the comparison between the esotropic amblyopic eyes and the normal eyes (P=0.036).Conclusion: The wave amplitude parameter of VEP was influenced by both types of amblyopia, but it seems that this parameter was more sensitive to esotropic amblyopia than anisometropic amblyopia. This outcome may reflect a non-parallel pattern of cortical responses in the comparison of the 2 types of amblyopia with each other and with the control group, which may be beneficial for the diagnosis and treatment of amblyopia.

Keywords

  1. Gharebaghi AH, Heidary F, Gharebaghi R, Heidary R. Mehdi-ODM; a modified digital monitoring of the occlusion therapy for amblyopia. Graefes Arch Clin Exp Ophthalmol. 2011;249:945-6. doi: 10.1007/s00417-010-1491-x. PubMed PMID: 21234584.
  2. Chung W, Hong S, Lee JB, Han SH. Pattern visual evoked potential as a predictor of occlusion therapy for amblyopia. Korean J Ophthalmol. 2008;22:251-4. doi: 10.3341/kjo.2008.22.4.251. PubMed PMID: 19096243; PubMed Central PMCID: PMC2629911.
  3. Tognini P, Manno I, Bonaccorsi J, Cenni MC, Sale A, Maffei L. Environmental enrichment promotes plasticity and visual acuity recovery in adult monocular amblyopic rats. PLoS One. 2012;7:e34815. doi: 10.1371/journal.pone.0034815. PubMed PMID: 22509358; PubMed Central PMCID: PMC3324549.
  4. Sloper J. Amblyopia beyond acuity. J AAPOS. 2008;12:3-4. doi: 10.1016/j.jaapos.2007.10.011. PubMed PMID: 18155940.
  5. Holmes JM, Clarke MP. Amblyopia. Lancet. 2006;367:1343-51. doi: 10.1016/S0140-6736(06)68581-4. PubMed PMID: 16631913.
  6. Simmers AJ, Ledgeway T, Hess RF, McGraw PV. Deficits to global motion processing in human amblyopia. Vision Res. 2003;43:729-38. doi: 10.1016/S0042-6989(02)00684-3. PubMed PMID: 12604110.
  7. Halfeld Furtado de Mendonca R, Abbruzzese S, Bagolini B, Nofroni I, Ferreira EL, Odom JV. Visual evoked potential importance in the complex mechanism of amblyopia. Int Ophthalmol. 2013;33:515-9. doi: 10.1007/s10792-013-9734-6. PubMed PMID: 23417145; PubMed Central PMCID: PMC3782652.
  8. Choi MY, Lee DS, Hwang JM, Choi DG, Lee KM, Park KH, et al. Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. J Pediatr Ophthalmol Strabismus. 2002;39:11-9. PubMed PMID: 11859911.
  9. Wong AM. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Can J Ophthalmol. 2012;47:399-409. doi: 10.1016/j.jcjo.2012.05.002. PubMed PMID: 23036539.
  10. Tello C, De Moraes CG, Prata TS, Derr P, Patel J, Siegfried J, et al. Repeatability of short-duration transient visual evoked potentials in normal subjects. Doc Ophthalmol. 2010;120:219-28. doi: 10.1007/s10633-010-9216-3. PubMed PMID: 20111979; PubMed Central PMCID: PMC2869044.
  11. Davis AR, Sloper JJ, Neveu MM, Hogg CR, Morgan MJ, Holder GE. Differential changes of magnocellular and parvocellular visual function in early- and late-onset strabismic amblyopia. Invest Ophthalmol Vis Sci. 2006;47:4836-41. doi: 10.1167/iovs.06-0382. PubMed PMID: 17065495.
  12. Lalor EC, Foxe JJ. Visual evoked spread spectrum analysis (VESPA) responses to stimuli biased towards magnocellular and parvocellular pathways. Vision Res. 2009;49:127-33. doi: 10.1016/j.visres.2008.09.032. PubMed PMID: 18977382.
  13. Zele AJ, Pokorny J, Lee DY, Ireland D. Anisometropic amblyopia: spatial contrast sensitivity deficits in inferred magnocellular and parvocellular vision. Invest Ophthalmol Vis Sci. 2007;48:3622-31. doi: 10.1167/iovs.06-1207. PubMed PMID: 17652732.
  14. Feng LX, Zhao KX. Study on anisometropic amblyopia by simultaneously recording multifocal VEP and multifocal ERG. Zhonghua Yan Ke Za Zhi. 2005;41:41-6. PubMed PMID: 15774113.
  15. Bonhomme GR, Liu GT, Miki A, Francis E, Dobre MC, Modestino EJ, et al. Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. J AAPOS. 2006;10:540-6. doi: 10.1016/j.jaapos.2006.07.008. PubMed PMID: 17189148.
  16. Davis AR, Sloper JJ, Neveu MM, Hogg CR, Morgan MJ, Holder GE. Differential changes in color and motion-onset visual evoked potentials from both eyes in early- and late-onset strabismic amblyopia. Invest Ophthalmol Vis Sci. 2008;49:4418-26. doi: 10.1167/iovs.07-1437. PubMed PMID: 18539945.
  17. Davis AR, Sloper JJ, Neveu MM, Hogg CR, Morgan MJ, Holder GE. Electrophysiological and psychophysical differences between early- and late-onset strabismic amblyopia. Invest Ophthalmol Vis Sci. 2003;44:610-7. doi: 10.1167/iovs.02-0240. PubMed PMID: 12556390.
  18. Moschos MM, Margetis I, Tsapakis S, Panagakis G, Chatzistephanou IK, Iliakis E. Multifocal visual evoked potentials in amblyopia due to anisometropia. Clin Ophthalmol. 2010;4:849-53. doi: 10.2147/OPTH.S11762. PubMed PMID: 20714361; PubMed Central PMCID: PMC2921291.
  19. Demirci H, Gezer A, Sezen F, Ovali T, Demiralp T, Isoglu-Alkoc U. Evaluation of the functions of the parvocellular and magnocellular pathways in strabismic amblyopia. J Pediatr Ophthalmol Strabismus. 2002;39:215-21. PubMed PMID: 12148554.
  20. Heravian J, Daneshvar R, Dashti F, Azimi A, Ostadi Moghaddam H, Yekta AA, et al. Simultaneous pattern visual evoked potential and pattern electroretinogram in strabismic and anisometropic amblyopia. Iran Red Crescent Med J. 2011;13:21-6. PubMed PMID: 22946015; PubMed Central PMCID: PMC3407582.
  21. Shan Y, Moster ML, Roemer RA, Siegfried JB. Abnormal function of the parvocellular visual system in anisometropic amblyopia. J Pediatr Ophthalmol Strabismus. 2000;37:73-8. PubMed PMID: 10779264.
  22. Wang X, Cui D, Zheng L, Yang X, Yang H, Zeng J. Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol Vis. 2012;18:909-19. PubMed PMID: 22539870; PubMed Central PMCID: PMC3335782.
  23. Hess RF, Thompson B, Baker DH. Binocular vision in amblyopia: structure, suppression and plasticity. Ophthalmic Physiol Opt. 2014;34:146-62. doi: 10.1111/opo.12123. PubMed PMID: 24588532.
  24. Oner A, Coskun M, Evereklioglu C, Dogan H. Pattern VEP is a useful technique in monitoring the effectiveness of occlusion therapy in amblyopic eyes under occlusion therapy. Doc Ophthalmol. 2004;109:223-7. doi: 10.1007/s10633-004-7098-y. PubMed PMID: 15957607.
  25. Choi MY, Lee KM, Hwang JM, Choi DG, Lee DS, Park KH, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol. 2001;85:1052‑6. doi: 10.1136/bjo.85.9.1052. PubMed PMID: 11520755; PubMed Central PMCID: PMC1724107.
  26. Li C, Cheng L, Yu Q, Xie B, Wang J. Relationship of visual cortex function and visual acuity in anisometropic amblyopic children. Int J Med Sci. 2012;9:115-20. doi: 10.7150/ijms.9.115. PubMed PMID: 22211099; PubMed Central PMCID: PMC3245421.
  27. Parisi V, Scarale ME, Balducci N, Fresina M, Campos EC. Electrophysiological detection of delayed postretinal neural conduction in human amblyopia. Invest Ophthalmol Vis Sci. 2010;51:5041-8. doi: 10.1167/iovs.10-5412. PubMed PMID: 20463312.
  28. Watts PO, Neveu MM, Holder GE, Sloper JJ. Visual evoked potentials in successfully treated strabismic amblyopes and normal subjects. J AAPOS. 2002;6:389-92. doi: 10.1067/mps.2002.129046. PubMed PMID: 12506282.
  29. Krzystkowa KM, Kubatko-Zielinska A, Wojcik E, Strek W, Lebiedz J. Changes observed in electrophysiological investigations in amblyopia and strabismus. Klin Oczna. 1998;100:229-34. PubMed PMID: 9770983.
  30. Zhang W, Zhao K. Multifocal VEP difference between early- and late-onset strabismus amblyopia. Doc Ophthalmol. 2005;110:173‑80. doi: 10.1007/s10633-005-4312-5. PubMed PMID: 16328925.