Characterization and Lytic Activity of Isolated Escherichia Coli Bacteriophages against Escherichia Coli in Vitro

Golnar Rahimzadeh1, PhD; Gregory Resch2, PhD; Mohammad Sadegh Rezai1, MD; Ebrahim Nemati Hevelae3, MSc

1Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran; 2Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland; 3Laboratory of microbiology, Bouali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran

Correspondence: Mohammad Sadegh Rezai, MD; Pediatric Infectious Diseases Research Centre, Bouali Sina Hospital, Pasdaran Boulevard, Sari, Iran Tel/Fax: +98 11 3342334 Email: drmsrezaii@yahoo.com Received: 27 June 2018 Revised: 13 October 2018 Accepted: 28 October 2018

Abstract

Background: Escherichia coli (E. coli) is the most common cause of urinary tract infection (UTI) and typically treated with antibiotics. Unrestricted use of antibiotics may lead to the emergence of antibiotic-resistant bacteria. The present study aimed to isolate and characterize phages against E. coli from infected urine samples and to determine the lytic activity of phages against E. coli in vitro.

Methods: The present experimental study was conducted in the Laboratory of Bouali Sina Hospital (Sari, Iran) in May 2018. E. coli was identified from nine urine samples of patients with UTI using the conventional microbiological methods. Bacteriophages were isolated from the infected urine specimens and their lytic activity was determined using the spot test. The titer of the bacteriophages was measured using the double-layer agar technique. The morphology of the bacteriophages was revealed using transmission electron microscopy and the latent time period and burst size were determined. Data were analyzed using SPSS software package (version 20.0).

Results: E. coli was isolated from infected nine urine samples. The lytic activity of bacteriophages against E. coli was determined using the spot test by observing the formation of inhibition zones. Transmission electron microscopy showed E. coli phages belonging to the Myoviridae family. The latent time period was 20 minutes with a burst size of 1,200 plaque-forming unit (PFU) per infected cell. The results of the double-layer agar assay showed that the titer of bacteriophages was 20×10⁸ PFU/ml.

Conclusion: The E. coli bacteriophage was isolated and characterized from infected urine samples and their lytic activity against E. coli was determined in vitro.

What’s Known

- Escherichia coli (E. coli) is responsible for 75% of the urinary tract infections and typically treated with antibiotics.
- Unrestricted use of antibiotics has led to the emergence of a new class of drug resistance enzymes called extended-spectrum beta-lactamases (ESBL) and ESBL producing strains.

What’s New

- Due to the global rise in antibiotic resistance, phages have attracted attention as an alternative to antibiotics.
- E. coli bacteriophages were isolated from infected urinary specimens and their lytic activity against E. coli was characterized in vitro.

Introduction

Urinary tract infection (UTI) is the most common cause of nosocomial infections and the second most common infection in humans. Most UTIs are caused by normal colon bacteria such as Klebsiella pneumoniae, Escherichia coli (E. coli), Proteus, and Pseudomonas aeruginosa. Annually, about 150 million people are infected with UTI caused by E. coli.¹

E. coli strains that cause UTIs (uropathogenic E. coli) are
Isolation of \textit{Escherichia coli} bacteriophages from infected urine samples against \textit{E. coli}

\textbf{Materials and Methods}

\textit{Isolation of \textit{E. coli} from Infected Urine Samples}

\textit{E. coli} was isolated from nine urine samples of patients with UTI and identified using the conventional microbiological methods (culture on blood agar, MacConkey agar, and eosin-methylene blue agar; all from QUELAB, USA). The plates were incubated at 37 °C for 24 hours. The pure isolates were characterized and identified through Gram-staining and with biochemical tests such as catalase, Simmons citrate agar, indole production, methyl-red and Voges-Proskauer (MR-VP), and triple sugar iron agar (TSI).\cite{22} Sensitivity to antibiotics agents was determined using the disk diffusion method in accordance with the guidelines from the Clinical and Laboratory Standards Institute (CLSI). The antibiotic discs used were: Nalidixic acid (30 μg), Cefixime (5 μg), Piperacillin (100 μg), Amikacin (30 μg), gentamicin (10 μg), ceftriaxone (30 μg), Nitrofurantoin (300 μg), Ampicillin-Sulbactam acid (10/10 μg), and ceftazidime (30 μg); all from Rosco, USA.\cite{22}

\textit{Isolation of \textit{E. coli} Bacteriophage}

Initially, the urine samples were stored at 4 °C. An equal volume of 2X LB broth (QUELAB, USA) containing \textit{E. coli} was added to each urine sample and incubated overnight at 37 °C with shaking. The culture was then centrifuged at 10,000 ×g for 10 minutes at 4 °C and the supernatant was filtered through Millipore filters with 0.22 μm pore size (Millipore, USA).\cite{23,24}

\textit{Determination of the Host Range using Spot Test}

The overnight \textit{E. coli} cultures (100 μl) from the nine samples were individually mixed with 3 ml top agar and poured into Petri dishes containing bottom agar, and subsequently 10 μl of isolated phages was added. The dishes were incubated at 37 °C overnight. The following day, the dishes were checked for inhibition zones.\cite{23,24}

\textit{The Titer of Bacteriophages}

Double-layer agar assay was performed to determine the titer of bacteriophages. The \textit{E. coli} in the LB medium was inoculated and shook at 37 °C until the optical density at 600 nm was reached. The serial dilutions of phages were prepared in seven tubes and two additional tubes (8 and 9) were used as negative and positive controls, respectively. The diluted phages (100 μl) were added to 100 μl \textit{E. coli} and top agarose (3 ml) was added onto the LB agar plate. The plates were inverted and incubated at room temperature overnight, after which the plaques were counted.\cite{23,24}

\textit{Electron Microscope Observation of Phages}

Bacteriophages were concentrated by centrifugation at 25,000 ×g for 60 minutes using
a high-speed centrifuge. The purified phages were deposited on carbon-coated copper grids (Sigma-Aldrich, Germany) and stained with 2% uranyl acetate (pH=4-4.5). After staining, phages were observed using a Philips CM 300 electron microscope at 150 kV.23, 24

The Single-Step Growth Curve
The phage lysate (200 μl) was added to 200 μl of LB broth (containing bacteria) and pre-incubated for 10 minutes at 37 °C to allow adsorption of the phages. A row of 16 sterile capped tubes was divided into four groups and aseptically added 900 μl LB broth to each tube. The phages were diluted in the LB broth by adding 100 μl to the first tube, mixed, and 100 μl was transferred to the second tube in the series (“1” to “4”). Then, 200 μl of an overnight culture of the bacteria was mixed with 200 μl of the diluted phages (“1” to “4”). The tubes were pre-incubated at 37 °C for 10 minutes to 40 hours to allow adsorption of the phages. At intervals, a sample was removed from the mixture and the number of free phages counted using a plaque assay. Petri dishes were incubated overnight at 37 °C. The following day, the number of plaques was counted and PFU/ml was calculated; equal to the number of plaques times the dilution factor (inverse of the dilutions).23, 24

Results
The results of the conventional microbiological method confirmed the isolation of E. coli strains from the infected urine samples (table 1). The sensitivity to antibiotics agents was determined in accordance with the CLSI guidelines. As shown in figure 1, the results revealed that four E. coli isolates were resistant to Nalidixic acid (30 μg), Cefixime (5 μg), Piperacillin (100 μg), ceftriaxone (30 μg). These isolates were however sensitive to Amikacin (30 μg), Gentamicin (10 μg), Ampicillin-Sulbactam acid (10/10 μg), and Nitrofurantoin (300 μg). The other two E. coli isolates were resistant to Nalidixic acid (30 μg), Piperacillin (100 μg), and ceftriaxone (30 μg); however, sensitive to Amikacin (30 μg), Ampicillin-Sulbactam acid (10/10 μg), Nitrofurantoin (300 μg), and cefazidime (30 μg), but semi-sensitive to Gentamicin (10 μg) and Cefixime (5 μg).

The host range of isolated phages was determined using spot testing and inhibition zones were observed in all samples. The results indicated that bacteriophages have lytic activity against nine E. coli strains with antibiotic susceptibility patterns (figure 2). The results of the double-layer agar assay showed that the titer of bacteriophages was 20×10⁸ PFU/ml. Electron microscopy was performed by negative staining with 2% uranyl acetate (pH=4-4.5) at 150 kV. The results showed one isolated phage group with an icosahedral head (60 nm) and a long non-contractile tail (200 nm). The isolated bacteriophages belonged to the Myoviridae family (order: Caudovirales); figure 3. The results of the single-step growth curve showed that the latent time period of isolated E. coli bacteriophages was 20 minutes with a burst size of 1200 PFU per infected host.
Isolation of *Escherichia coli* bacteriophages from infected urine samples against *E. coli*

In the present study, the phage against *E. coli* was isolated from urine sample of patients with UTI and the lytic activity of phages was confirmed with the spot test. The images obtained from the electron microscope revealed the separation of a phage type with a phenotypic attribute belonging to the *Myoviridae* family, with an icosahedral head and a 200-nm tail. Phages related to T7 have been classified into four groups in terms of amino acid of major capsid proteins, including Exo-T-even, Schizo-T-even, Pseudo-T-even, and T-even. Our results showed that the lytic activity of this phage on different strains of *E. coli* was different in terms of their resistance pattern to antibiotics. A previous study showed that the lytic phage T4 and T6 had a limited hosting range, but phage KEP10 displayed lytic activity against a wide range of hosts. Phages which were separated from different sources had different lytic activity. Ghasemian and others isolated 32 phages from the rivers in 32 cities in Iran. They showed that only the phage isolated from the city of Nowshahr had lytic activity against *E. coli*. Moreover, they reported that even the isolated phages from one region had different sources and lytic activities. Another study conducted in the northwest of Iran showed that the phages isolated from urban sewage had a higher impact against *E. coli* compared to those isolated from the rivers.

In a study by Galtie and others, AL505_P1, AL505_P2, AL505_P3 phages were isolated from sewage which belonged to the *Podoviridae*, *Myoviridae*, and *Siphoviridae* families, respectively. The lytic activity of these phages against the *E. coli* AL505 strain, caused by uropathogenic *E. coli* isolated from a patient with pyelonephritis, was confirmed.

In the present study, the latent time period of isolated *E. coli* bacteriophages was 20 minutes and the number of viable progenies per infected host was 1200 PFU per infected host. However, another study reported a latent time period of 24 minutes in phages isolated for sewage water which belonged to the *Myoviridae* family. Also, Pouillot and others reported the latent time period of *Podoviridae* against *E. coli* strain was 25 minutes. Dufour and others used bacteriophage LM33-P1 to infect the *E. coli* O25b strain, which is highly resistant to β-lactams and fluoroquinolones. They showed a latent time period of 9 minutes in vitro against this phage strain. Also, its lytic activity in vivo against UTI, septicemia, and meningitis caused by *E. coli* was confirmed. Their findings indicated the potential of lytic phages for the treatment of UTI caused by *E. coli*.

The main limitation of the present study, due to financial constraints, was that genome sequence of isolated bacteriophages was not performed.

Conclusion

E. coli bacteriophages were isolated from infected urinary specimens and their lytic activity against *E. coli* was characterized with different antibiotic resistance patterns in vitro. These bacteriophages differed in terms of features and lytic activity depending on the source of the phage.

Acknowledgment

The present manuscript was extracted from the thesis by Golnar Rahimzadeh (grant number:...
The study was financially supported by the Deputy of Research and Technology, Mazandaran University of Medical Sciences, Sari, Iran (IR.MAZUMS.REC.1396.10315). The authors would like to thank the staff at the Research Laboratory and the Pediatric Infectious Diseases Research Centre of Bouali Sina Hospital, Sari, Iran.

Conflict of Interest: None declared.

References

16. Snyder AB, Perry JJ, Yousef AE. Developing and optimizing bacteriophage treatment

