Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Biology, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia

2 Institute for Molecular Infection Biology (IMIB), Julius Maximilians University of Wuerzburg, Wuerzburg, Germany

3 School of Health Science and Biomedical Technology Research Group for Vulnerable Populations, Mae Fah Luang University, Chiang Rai, Thailand

4 Technology of Medical Laboratory, Anwar Medika University, Sidoarjo, Indonesia

5 Microbial Genetics, Eberhard Karls University of Tuebingen, Tuebingen, Germany

6 Department of Biology, Faculty of Science and Technology, Airlangga University,Surabaya, Indonesia

10.30476/ijms.2023.98767.3087

Abstract

Background: Antibiotic resistance is a global public health concern that has been exacerbated by the overuse and misuse of antibiotics, leading to the emergence of resistant bacteria. The gut microbiota, often influenced by antibiotic usage, plays a crucial role in overall health. Therefore, this study aimed to investigate the prevalence of antibiotic resistant genes in the gut microbiota of Indonesian coastal and highland populations, as well as to identify vancomycin-resistant bacteria and their resistant genes. 
Methods: Stool samples were collected from 22 individuals residing in Pacet, Mojokerto, and Kenjeran, Surabaya Indonesia in 2022. The read count of antibiotic resistant genes was analyzed in the collected samples, and the bacterium concentration was counted by plating on the antibiotic-containing agar plate. Vancomycin-resistant strains were further isolated, and the presence of vancomycin-resistant genes was detected using a multiplex polymerase chain reaction (PCR).
Results: The antibiotic resistant genes for tetracycline, aminoglycosides, macrolides, beta-lactams, and vancomycin were found in high frequency in all stool samples (100%) of the gut microbiota. Meanwhile, those meant for chloramphenicol and sulfonamides were found in 86% and 16% of the samples, respectively. Notably, vancomycin-resistant genes were found in 16 intrinsically resistant Gram-negative bacterial strains. Among the detected vancomycin-resistant genes, vanG was the most prevalent (27.3%), while vanA was the least prevalent (4.5%). 
Conclusion: The presence of multiple vancomycin resistance genes in intrinsically resistant Gram-negative bacterial strains demonstrated the importance of the gut microbiota as a reservoir and hub for the horizontal transfer of antibiotic resistant genes.

Keywords

  1. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016;13:e1002184. doi: 10.1371/journal.pmed.1002184. PubMed PMID: 27898664; PubMed Central PMCID: PMCPMC5127510
  2. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58. doi: 10.2147/IDR.S173867. PubMed PMID: 30349322; PubMed Central PMCID: PMCPMC6188119.
  3. Ramdhani D, Fitrikusuma S, Mustarichie R. Amoxilin resistance in the area of Tasikmalaya, West Java. Journal of Chemical and Pharmaceutical Research. 2016;8:873-8.
  4. Ramdhani D, Azizah SN, Kusuma SAF, Sediana D. Antibiotic resistance: Evaluation of levofloxacin treatment in acute respiratory tract infections cases at the Tasikmalaya City Health Center, Indonesia. J Adv Pharm Technol Res. 2020;11:113-6. doi: 10.4103/japtr.JAPTR_17_20. PubMed PMID: 33102193; PubMed Central PMCID: PMCPMC7574731.
  5. Ramdhani D, Kusuma SAF, Hakim AC, Sediana D. Ciprofloxacin antibiotic resistance in acute respiratory infection (ARI): identification of bacteria in patient clinical isolates at Tasikmalaya city health center, Indonesia. World Journal of Pharmaceutical Research. 2019;8:138-45.
  6. Ramdhani D, Kusuma SAF, Sediana D, Bima APH, Khumairoh I. Comparative study of cefixime and tetracycline as an evaluation policy driven by the antibiotic resistance crisis in Indonesia. Sci Rep. 2021;11:18461. doi: 10.1038/s41598-021-98129-y. PubMed PMID: 34531515; PubMed Central PMCID: PMCPMC8445965.
  7. Sugianli AK, Ginting F, Kusumawati RL, Pranggono EH, Pasaribu AP, Gronthoud F, et al. Antimicrobial resistance in uropathogens and appropriateness of empirical treatment: a population-based surveillance study in Indonesia. J Antimicrob Chemother. 2017;72:1469-77. doi: 10.1093/jac/dkw578. PubMed PMID: 28137940; PubMed Central PMCID: PMCPMC5400082.
  8. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260-70. doi: 10.1038/nrg3182. PubMed PMID: 22411464; PubMed Central PMCID: PMCPMC3418802.
  9. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14:e1002533. doi: 10.1371/journal.pbio.1002533. PubMed PMID: 27541692; PubMed Central PMCID: PMCPMC4991899.
  10. Hu Y, Yang X, Lu N, Zhu B. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes. 2014;5:245-9. doi: 10.4161/gmic.27916. PubMed PMID: 24637798; PubMed Central PMCID: PMCPMC4063852.
  11. Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23:99-139. doi: 10.1128/CMR.00042-09. PubMed PMID: 20065327; PubMed Central PMCID: PMCPMC2806658.
  12. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167-76. doi: 10.2147/IDR.S48820. PubMed PMID: 25018641; PubMed Central PMCID: PMCPMC4073975.
  13. Luqman A, Nugrahapraja H, Wahyuono RA, Islami I, Haekal MH, Fardiansyah Y, et al. Microplastic contamination in human stools, foods, and drinking water associated with indonesian coastal population. Environments. 2021;8:138. doi: 10.3390/environments8120138.
  14. Wibowo AT, Nugrahapraja H, Wahyuono RA, Islami I, Haekal MH, Fardiansyah Y, et al. Microplastic contamination in the human gastrointestinal tract and daily consumables associated with an Indonesian farming community. Sustainability. 2021;13:12840. doi:10.3390/su132212840.
  15. Nugrahapraja H, Sugiyo PWW, Putri BQ, Huang L, Hafza N, Götz F, et al. Effects of Microplastic on Human Gut Microbiome: Detection of Plastic-Degrading Genes in Human Gut Exposed to Microplastics—Preliminary Study. Environments. 2022;9:140. doi:10.3390/environments9110140.
  16. Luqman A, Zabel S, Rahmdel S, Merz B, Gruenheit N, Harter J, et al. The Neuromodulator-Encoding sadA Gene Is Widely Distributed in the Human Skin Microbiome. Front Microbiol. 2020;11:573679. doi: 10.3389/fmicb.2020.573679. PubMed PMID: 33335515; PubMed Central PMCID: PMCPMC7736160.
  17. Clinical and Laboratory Standard Institute. Performance standard for antimicrobial susceptibility testing: M100. 30thed. Wayne: CLSI; 2020.
  18. Luqman A, Nega M, Nguyen MT, Ebner P, Gotz F. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Rep. 2018;22:535-45. doi: 10.1016/j.celrep.2017.12.058. PubMed PMID: 29320746.
  19. Luqman A, Muttaqin MZ, Yulaipi S, Ebner P, Matsuo M, Zabel S, et al. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun Biol. 2020;3:277. doi: 10.1038/s42003-020-1000-7. PubMed PMID: 32483173; PubMed Central PMCID: PMCPMC7264277.
  20. Luqman A, Kumari N, Saising J, Ammanath AV, Alami NH, Prasetyo EN, et al. The prevalence of antimicrobial-producing Gram-positive bacteria in human gut: a preliminary study. Advancements in Life Sciences. 2023;10:1-4.
  21. Bhatt P, Sahni AK, Praharaj AK, Grover N, Kumar M, Chaudhari CN, et al. Detection of glycopeptide resistance genes in enterococci by multiplex PCR. Med J Armed Forces India. 2015;71:43-7. doi: 10.1016/j.mjafi.2014.03.005. PubMed PMID: 25609863; PubMed Central PMCID: PMCPMC4297841.
  22. Karuniawati H, Hassali MAA, Suryawati S, Ismail WI, Taufik T, Hossain MS. Assessment of Knowledge, Attitude, and Practice of Antibiotic Use among the Population of Boyolali, Indonesia: A Cross-Sectional Study. Int J Environ Res Public Health. 2021;18. doi: 10.3390/ijerph18168258. PubMed PMID: 34444015; PubMed Central PMCID: PMCPMC8394957.
  23. Coyne L, Patrick I, Arief R, Benigno C, Kalpravidh W, McGrane J, et al. The Costs, Benefits and Human Behaviours for Antimicrobial Use in Small Commercial Broiler Chicken Systems in Indonesia. Antibiotics (Basel). 2020;9. doi: 10.3390/antibiotics9040154. PubMed PMID: 32244693; PubMed Central PMCID: PMCPMC7235826.
  24. Hardiati A, Safika S, Wibawan IWT, Indrawati A, Pasaribu FH. Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. J Adv Vet Anim Res. 2021;8:84-90. doi: 10.5455/javar.2021.h489. PubMed PMID: 33860017; PubMed Central PMCID: PMCPMC8043354.
  25. Bronzwaer SL, Cars O, Buchholz U, Molstad S, Goettsch W, Veldhuijzen IK, et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg Infect Dis. 2002;8:278-82. doi: 10.3201/eid0803.010192. PubMed PMID: 11927025; PubMed Central PMCID: PMCPMC2732471.
  26. Tang KL, Caffrey NP, Nobrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 2017;1:e316-e27. doi: 10.1016/S2542-5196(17)30141-9. PubMed PMID: 29387833; PubMed Central PMCID: PMCPMC5785333.
  27. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl Environ Microbiol. 2019;85. doi: 10.1128/AEM.01738-18. PubMed PMID: 30366997; PubMed Central PMCID: PMCPMC6293106.
  28. Goldstein EJ, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 2015;60:S98-107. doi: 10.1093/cid/civ072. PubMed PMID: 25922408.
  29. Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari IH. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr. 2022;10:2896-910. doi: 10.1002/fsn3.2885. PubMed PMID: 36171785; PubMed Central PMCID: PMCPMC9469857.
  30. Kamboj K, Vasquez A, Balada-Llasat JM. Identification and significance of Weissella species infections. Front Microbiol. 2015;6:1204. doi: 10.3389/fmicb.2015.01204. PubMed PMID: 26583007; PubMed Central PMCID: PMCPMC4628101.
  31. Klobucar K, Cote JP, French S, Borrillo L, Guo ABY, Serrano-Wu MH, et al. Chemical Screen for Vancomycin Antagonism Uncovers Probes of the Gram-Negative Outer Membrane. ACS Chem Biol. 2021;16:929-42. doi: 10.1021/acschembio.1c00179. PubMed PMID: 33974796.
  32. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009;69:1555-623. doi: 10.2165/11317030-000000000-00000. PubMed PMID: 19678712; PubMed Central PMCID: PMCPMC2847397.
  33. Anthony WE, Burnham CD, Dantas G, Kwon JH. The Gut Microbiome as a Reservoir for Antimicrobial Resistance. J Infect Dis. 2021;223:S209-S13. doi: 10.1093/infdis/jiaa497. PubMed PMID: 33326581; PubMed Central PMCID: PMCPMC8206794.
  34. van Schaik W. The human gut resistome. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140087. doi: 10.1098/rstb.2014.0087. PubMed PMID: 25918444; PubMed Central PMCID: PMCPMC4424436.
  35. Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol. 2022;13:1042505. doi: 10.3389/fmicb.2022.1042505. PubMed PMID: 36687572; PubMed Central PMCID: PMCPMC9846239.
  36. Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, et al. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME J. 2022;16:500-10. doi: 10.1038/s41396-021-01093-8. PubMed PMID: 34433898; PubMed Central PMCID: PMCPMC8776902.
  37. Domingo MC, Huletsky A, Giroux R, Boissinot K, Picard FJ, Lebel P, et al. High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob Agents Chemother. 2005;49:4784-6. doi: 10.1128/AAC.49.11.4784-4786.2005. PubMed PMID: 16251331; PubMed Central PMCID: PMCPMC1280134.
  38. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42:S25-34. doi: 10.1086/491711. PubMed PMID: 16323116.