Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

10.30476/ijms.2023.99642.3175

Abstract

Background: Researchers are looking for a way to improve the myogenic differentiation of stem cells. Adipose-derived stem cells (ADSCs), known for their multipotency and regenerative capabilities, have been extensively studied for their therapeutic potential. Meanwhile, PC12 cells, derived from rat pheochromocytoma, have been found pivotal in neuroscience research, particularly as a neuronal model system. The current study investigated the effect of the PC12 adrenal pheochromocytoma cell line on the myogenic differentiation of ADSCs. 
Methods: This experimental study was conducted during 2019-2022 (Ahvaz, Iran). Differentiation of ADSCs was induced by using 3 μg/mL 5-azacytidine for 24 hours. Then, the culture media was changed with Dulbecco’s Modified Eagle-High Glucose (DMEM-HG) containing 5% horse serum (HS) and kept for 7 days. Different percentages of differentiated ADSCs and PC12 (100:0, 70:30, 50:50, 30:70) were cocultured for 7 days in DMEM-HG containing 5% HS. PC12 was labeled with cell tracker C7000. The real-time polymerase chain reaction and Western blotting techniques were utilized to assess gene and protein expression. All experiments were repeated three times. Data were analyzed using GraphPad Prism 8.0.2 software with a one-way analysis of variance. P<0.05 was considered statistically significant.
Results: PC12 visualization confirmed the accuracy of the co-culture process. The differentiated cells showed an aligned, multinucleated shape. The differentiated ADSCs revealed significantly elevated levels of Myh1, Myh2, and Chrn-α1 gene expression compared with undifferentiated ADSCs (P<0.0001). The ADSCs cocultured with PC12 cells showed significantly higher Myh1, Myh2, and Chrn-α1 gene expression than differentiated ADSCs (P<0.001). ADSCs cocultured with 50% PC12 revealed significantly higher MYH and nAchR protein expression than the differentiated group (P<0.01 and P<0.001). 
Conclusion: Coculturing PC12 cells and ADSCs improves the efficiency of myogenic differentiation. However, the effectiveness of myogenic differentiation depends on the proportions of administered PC12 cells.

Keywords

  1. Narayanan N, Lengemann P, Kim KH, Kuang L, Sobreira T, Hedrick V, et al. Harnessing nerve-muscle cell interactions for biomaterials-based skeletal muscle regeneration. J Biomed Mater Res A. 2021;109:289-99. doi: 10.1002/jbm.a.37022. PubMed PMID: 32490576.
  2. Rodriguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci. 2020;13:610964. doi: 10.3389/fnmol.2020.610964. PubMed PMID: 33343299; PubMed Central PMCID: PMCPMC7744297.
  3. Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies: The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep. 2021;17:878-99. doi: 10.1007/s12015-020-10100-y. PubMed PMID: 33349909; PubMed Central PMCID: PMCPMC8166694.
  4. Liu N, Wang G, Zhen Y, Shang Y, Nie F, Zhu L, et al. Factors influencing myogenic differentiation of adipose-derived stem cells and their application in muscle regeneration. Chinese Journal of Plastic and Reconstructive Surgery. 2022;4:126-32. doi: 10.1016/j.cjprs.2022.06.006.
  5. Chen H, Li Z, Lin M, Lv X, Wang J, Wei Q, et al. MicroRNA-124-3p affects myogenic differentiation of adipose-derived stem cells by targeting Caveolin-1 during pelvic floor dysfunction in Sprague Dawley rats. Ann Transl Med. 2021;9:161. doi: 10.21037/atm-20-8212. PubMed PMID: 33569463; PubMed Central PMCID: PMCPMC7867888.
  6. Cai A, Schneider P, Zheng ZM, Beier JP, Himmler M, Schubert DW, et al. Myogenic differentiation of human myoblasts and Mesenchymal stromal cells under GDF11 on NPoly-varepsilon-caprolactone-collagen I-Polyethylene-nanofibers. BMC Mol Cell Biol. 2023;24:18. doi: 10.1186/s12860-023-00478-1. PubMed PMID: 37189080; PubMed Central PMCID: PMCPMC10184409.
  7. Cai A, Zheng ZM, Himmler M, Schubert DW, Fuchsluger TA, Weisbach V, et al. Schwann Cells Promote Myogenic Differentiation of Myoblasts and Adipogenic Mesenchymal Stromal Cells on Poly-varepsilon-Caprolactone-Collagen I-Nanofibers. Cells. 2022;11. doi: 10.3390/cells11091436. PubMed PMID: 35563742; PubMed Central PMCID: PMCPMC9100029.
  8. Arifuzzaman M, Ito A, Ikeda K, Kawabe Y, Kamihira M. Fabricating Muscle-Neuron Constructs with Improved Contractile Force Generation. Tissue Eng Part A. 2019;25:563-74. doi: 10.1089/ten.TEA.2018.0165. PubMed PMID: 30221587.
  9. Ostrovidov S, Ahadian S, Ramon-Azcon J, Hosseini V, Fujie T, Parthiban SP, et al. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J Tissue Eng Regen Med. 2017;11:582-95. doi: 10.1002/term.1956. PubMed PMID: 25393357.
  10. Grassi F, Fucile S. Calcium influx through muscle nAChR-channels: One route, multiple roles. Neuroscience. 2020;439:117-24. doi: 10.1016/j.neuroscience.2019.04.011. PubMed PMID: 30999028.
  11. Hettwer S, Lin S, Kucsera S, Haubitz M, Oliveri F, Fariello RG, et al. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLoS One. 2014;9:e88739. doi: 10.1371/journal.pone.0088739. PubMed PMID: 24520420; PubMed Central PMCID: PMCPMC3919806.
  12. Xing R, Cheng X, Qi Y, Tian X, Yan C, Liu D, et al. Low-dose nicotine promotes autophagy of cardiomyocytes by upregulating HO-1 expression. Biochem Biophys Res Commun. 2020;522:1015-21. doi: 10.1016/j.bbrc.2019.11.086. PubMed PMID: 31813548.
  13. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38:41-8. doi: 10.1093/ilar.38.1.41. PubMed PMID: 11528046.
  14. Dayer D, Tabandeh MR, Moghimipour E, Hashemi Tabar M, Ghadiri A, Allah Bakhshi E, et al. MafA Overexpression: A New Efficient Protocol for In Vitro Differentiation of Adipose-Derived Mesenchymal Stem Cells into Functional Insulin-Producing Cells. Cell J. 2019;21:169-78. doi: 10.22074/cellj.2019.5669. PubMed PMID: 30825290; PubMed Central PMCID: PMCPMC6397604.
  15. Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46:113-21. doi: 10.5115/acb.2013.46.2.113. PubMed PMID: 23869258; PubMed Central PMCID: PMCPMC3713275.
  16. Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells. 2020;9. doi: 10.3390/cells9040958. PubMed PMID: 32295099; PubMed Central PMCID: PMCPMC7227003.
  17. Heidari-Moghadam A, Bayati V, Orazizadeh M, Rashno M. Role of Vascular Endothelial Growth Factor and Human Umbilical Vein Endothelial Cells in Designing An In Vitro Vascular-Muscle Cellular Model Using Adipose-Derived Stem Cells. Cell J. 2020;22:19-28. doi: 10.22074/cellj.2020.7034. PubMed PMID: 32779430; PubMed Central PMCID: PMCPMC7481900.
  18. Bai L, Tu WY, Xiao Y, Zhang K, Shen C. Motoneurons innervation determines the distinct gene expressions in multinucleated myofibers. Cell Biosci. 2022;12:140. doi: 10.1186/s13578-022-00876-6. PubMed PMID: 36042463; PubMed Central PMCID: PMCPMC9429338.
  19. Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel JC, et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020;2020:4356359. doi: 10.1155/2020/4356359. PubMed PMID: 32215017; PubMed Central PMCID: PMCPMC7085399
  20. Horner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells. 2021;10. doi: 10.3390/cells10123292. PubMed PMID: 34943800; PubMed Central PMCID: PMCPMC8699767.
  21. Forcales SV. Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci. 2015;7:123. doi: 10.3389/fnagi.2015.00123. PubMed PMID: 26217219; PubMed Central PMCID: PMCPMC4499759.
  22. Zhou Z, Zhao C, Cai B, Ma M, Kong S, Zhang J, et al. Myogenic differentiation potential of chicken mesenchymal stem cells from bone marrow. 2021. doi: 10.21203/rs.3.rs-847240/v1.
  23. Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells. 2022;11. doi: 10.3390/cells11091493. PubMed PMID: 35563799; PubMed Central PMCID: PMCPMC9104119.
  24. Patel S, Yin PT, Sugiyama H, Lee KB. Inducing Stem Cell Myogenesis Using NanoScript. ACS Nano. 2015;9:6909-17. doi: 10.1021/acsnano.5b00709. PubMed PMID: 26108385; PubMed Central PMCID: PMCPMC5808887.
  25. Osaki T, Wan Z, Kitajima S, Barbie DA, Gillrie MR, Kamm RD. Release of Motor Neuron Exosomes Containing TDP-43 and mTNF-α Near the Neuromuscular Junction Induces Skeletal Muscle Atrophy and Reduced Contractility in a 3D Human Model of ALS. Available at SSRN 3581364. doi: 10.2139/ssrn.3581364.
  26. Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond). 2022;19:52. doi: 10.1186/s12986-022-00687-z. PubMed PMID: 35907984; PubMed Central PMCID: PMCPMC9338682.
  27. Forcina L, Miano C, Pelosi L, Musaro A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics. 2019;20:24-37. doi: 10.2174/1389202920666190116094736. PubMed PMID: 31015789; PubMed Central PMCID: PMCPMC6446479.
  28. Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, et al. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron. 2017;94:500-16. doi: 10.1016/j.neuron.2017.04.018. PubMed PMID: 28472653.
  29. Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer’s disease research: PC12 cells. Front Mol Neurosci. 2022;15:1016559. doi: 10.3389/fnmol.2022.1016559. PubMed PMID: 36683856; PubMed Central PMCID: PMCPMC9846650.
  30. de Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, et al. The p75(NTR)-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes. 2017;10:686. doi: 10.1186/s13104-017-2994-x. PubMed PMID: 29202822; PubMed Central PMCID: PMCPMC5716223.
  31. Morcuende S, Munoz-Hernandez R, Benitez-Temino B, Pastor AM, de la Cruz RR. Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience. 2013;250:31-48. doi: 10.1016/j.neuroscience.2013.06.050. PubMed PMID: 23827308.
  32. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11:1164-78. doi: 10.5114/aoms.2015.56342. PubMed PMID: 26788077; PubMed Central PMCID: PMCPMC4697050.
  33. Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med. 2022;7:23. doi: 10.1038/s41536-022-00216-9. PubMed PMID: 35393412; PubMed Central PMCID: PMCPMC8991236.
  34. Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ. 2013;55:309-18. doi: 10.1111/dgd.12049. PubMed PMID: 23452121.
  35. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32. doi: 10.1016/j.semcdb.2017.11.011. PubMed PMID: 29127046.
  36. Im GI. Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: Their comparative efficacies and synergistic effects. J Biomed Mater Res A. 2017;105:2640-8. doi: 10.1002/jbm.a.36089. PubMed PMID: 28419760.
  37. Cao JQ, Liang YY, Li YQ, Zhang HL, Zhu YL, Geng J, et al. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling. Neural Regen Res. 2016;11:1638-43. doi: 10.4103/1673-5374.193244. PubMed PMID: 27904496; PubMed Central PMCID: PMCPMC5116844.
  38. Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther. 2021;12:8. doi: 10.1186/s13287-020-01955-6. PubMed PMID: 33407902; PubMed Central PMCID: PMCPMC7789635.