Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

Neonatal Research Center, Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/ijms.2023.99176.3123

Abstract

Background: Exchange transfusion (ET) is an effective treatment for acute bilirubin encephalopathy and extreme neonatal hyperbilirubinemia (ENH). It can reduce mortality and morbidity. This study aimed to investigate the trends and risk factors of ENH requiring ET in hospitalized neonates in Iran.
Methods: A retrospective analysis of medical records of neonates who underwent ET due to ENH was conducted from 2011 to 2021, in Shiraz, Iran. Clinical records were used to gather demographic and laboratory data. The quantitative data were expressed as mean±SD, and qualitative data was presented as frequency and percentage. P<0.05 was considered statistically significant.
Results: During the study, 377 ETs were performed for 329 patients. The annual rate of ET decreased by 71.2% during the study period. The most common risk factor of ENH was glucose-6-phosphate dehydrogenase (G6PD) deficiency (35%), followed by prematurity (13.06%), ABO hemolytic disease (7.6%), sepsis (6.4%), Rh hemolytic disease (6.08%), and minor blood group incompatibility (3.34%). In 28.52% of the cases, the cause of ENH was not identified. 17 (5.1%) neonates had acute bilirubin encephalopathy, of whom 6 (35.29%) had G6PD deficiency, 6 (35.29%) had ABO incompatibility, and 2 (11.76%) had Rh incompatibility.
Conclusion: Although the rate of ET occurrence has decreased, it seems necessary to consider different risk factors and appropriate guidelines for early identification and management of neonates at risk of ENH should be developed. The findings of the study highlighted the important risk factors of ENH in southern Iran, allowing for the development of appropriate prevention strategies. 

Keywords

  1. Hussein MS, AlOrainy WH, Daghriri AM, Alotaibi KM, Alanazi AHO, Alkhathlan HA, et al. Epidemiology and Management of Unconjugated Hyperbilirubinemia. Journal of Pharmaceutical Research International. 2021;33:1337-45. doi: 10.9734/jpri/2021/v33i60B34753.
  2. Olusanya BO, Ogunlesi TA, Kumar P, Boo NY, Iskander IF, de Almeida MF, et al. Management of late-preterm and term infants with hyperbilirubinaemia in resource-constrained settings. BMC Pediatr. 2015;15:39. doi: 10.1186/s12887-015-0358-z. PubMed PMID: 25884679; PubMed Central PMCID: PMCPMC4409776.
  3. Al-Lawama M, Al-Rimawi E, Al-Shibi R, Badran E. Adoption of the American Academy of Pediatrics’ neonatal hyperbilirubinemia guidelines and its effect on blood exchange transfusion rate in a tertiary care center in Amman, Jordan. J Blood Med. 2018;9:61-6. doi: 10.2147/JBM.S162191. PubMed PMID: 29713209; PubMed Central PMCID: PMCPMC5908209.
  4. Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol. 2005;25:54-9. doi: 10.1038/sj.jp.7211157. PubMed PMID: 15578034.
  5. Zahed Pasha Y, Alizadeh-Tabari S, Zahed Pasha E, Zamani M. Etiology and therapeutic management of neonatal jaundice in Iran: a systematic review and meta-analysis. World J Pediatr. 2020;16:480-93. doi: 10.1007/s12519-020-00339-3. PubMed PMID: 32052364.
  6. Chen YJ, Chen WC, Chen CM. Risk factors for hyperbilirubinemia in breastfed term neonates. Eur J Pediatr. 2012;171:167-71. doi: 10.1007/s00431-011-1512-8. PubMed PMID: 21681440.
  7. Barrington K, Sankaran K, Society CP, Fetus, Committee N. Guidelines for detection, management and prevention of hyperbilirubinemia in term and late preterm newborn infants. Paediatrics and Child Health. 2007;12:1B-12B. doi: 10.1093/pch/12.suppl_B.1B.
  8. Anderson NB, Calkins KL. Neonatal Indirect Hyperbilirubinemia. Neoreviews. 2020;21:e749-e60. doi: 10.1542/neo.21-11-e749. PubMed PMID: 33139512.
  9. Lauer BJ, Spector ND. Hyperbilirubinemia in the newborn. Pediatr Rev. 2011;32:341-9. doi: 10.1542/pir.32-8-341. PubMed PMID: 21807875.
  10. Maisels MJ, Bhutani VK, Bogen D, Newman TB, Stark AR, Watchko JF. Hyperbilirubinemia in the newborn infant > or =35 weeks’ gestation: an update with clarifications. Pediatrics. 2009;124:1193-8. doi: 10.1542/peds.2009-0329. PubMed PMID: 19786452.
  11. American Academy of Pediatrics Subcommittee on H. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114:297-316. doi: 10.1542/peds.114.1.297. PubMed PMID: 15231951.
  12. Walsh RJMAAFMC. Fanaroff and Martin’s Neonatal-Perinatal Medicine. Amsterdam: Elsevier; 2019. 1856 p.
  13. Badiee Z. Exchange transfusion in neonatal hyperbilirubinaemia: experience in Isfahan, Iran. Singapore Med J. 2007;48:421-3. PubMed PMID: 17453099.
  14. Esfandiarpour B, Ebrahimi H, Karkan MF, Farahmand N, Karambin MM. Neonatal exchange transfusion for hyperbilirubinemia in Guilan (the north province of Iran): a 3-year experience. Turk J Pediatr. 2012;54:626-31. PubMed PMID: 23692789.
  15. Hosseinpour Sakha S, Gharehbaghi MM. Exchange transfusion in severe hyperbilirubinemia: an experience in northwest Iran. Turk J Pediatr. 2010;52:367-71. PubMed PMID: 21043381.
  16. Alizadeh Taheri P, Sadeghi M, Sajjadian N. Severe neonatal hyperbilirubinemia leading to exchange transfusion. Med J Islam Repub Iran. 2014;28:64. PubMed PMID: 25405129; PubMed Central PMCID: PMCPMC4219894.
  17. Boskabadi H, Maamouri G, Abbasi M, Heidari E. Causes of neonatal jaundice requiring exchange transfusion. Journal of Comprehensive Pediatrics. 2021;12. doi: 10.5812/compreped.109539.
  18. Tankala R, Huang L, Hiskens M, Vangaveti V, Kandasamy Y, Hariharan G. Neonatal retrievals from a regional centre: Outcomes, missed opportunities and barriers to back transfer. J Paediatr Child Health. 2023;59:680-5. doi: 10.1111/jpc.16370. PubMed PMID: 36799108.
  19. Ree IMC, Besuden CFJ, Wintjens V, Verweij J, Oepkes D, de Haas M, et al. Exchange transfusions in severe Rh-mediated alloimmune haemolytic disease of the foetus and newborn: a 20-year overview on the incidence, associated risks and outcome. Vox Sang. 2021;116:990-7. doi: 10.1111/vox.13090. PubMed PMID: 33730387; PubMed Central PMCID: PMCPMC8596394.
  20. Shapiro SM, Riordan SM. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr Res. 2020;87:332-7. doi: 10.1038/s41390-019-0603-5. PubMed PMID: 31581172.
  21. Olusanya BO, Emokpae AA, Zamora TG, Slusher TM. Addressing the burden of neonatal hyperbilirubinaemia in countries with significant glucose-6-phosphate dehydrogenase deficiency. Acta Paediatr. 2014;103:1102-9. doi: 10.1111/apa.12735. PubMed PMID: 24990658.
  22. Moosazadeh M, Amiresmaili M, Aliramezany M. Prevalence of G6PD deficiency in Iran, a mata-analysis. Acta Med Iran. 2014;52:256-64. PubMed PMID: 24901854.
  23. Javadi M, Deravi S, Zarei S, Mahdavi N, Ranjbaran M. Prevalence of G6PD deficiency in Iranian neonates with jaundice: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2022;35:5813-20. doi: 10.1080/14767058.2021.1895738. PubMed PMID: 33722175.
  24. Kaplan M, Hammerman C, Vreman HJ, Stevenson DK, Beutler E. Acute hemolysis and severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. J Pediatr. 2001;139:137-40. doi: 10.1067/mpd.2001.115312. PubMed PMID: 11445808.
  25. Maisels MJ, Kring E. The contribution of hemolysis to early jaundice in normal newborns. Pediatrics. 2006;118:276-9. doi: 10.1542/peds.2005-3042. PubMed PMID: 16818575.
  26. Stevenson DK, Fanaroff AA, Maisels MJ, Young BW, Wong RJ, Vreman HJ, et al. Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics. 2001;108:31-9. doi: 10.1542/peds.108.1.31. PubMed PMID: 11433051.
  27. Bosma PJ. Inherited disorders of bilirubin metabolism. J Hepatol. 2003;38:107-17. doi: 10.1016/s0168-8278(02)00359-8. PubMed PMID: 12480568.
  28. Reichman NE, Teitler JO, Moullin S, Ostfeld BM, Hegyi T. Late-preterm birth and neonatal morbidities: population-level and within-family estimates. Ann Epidemiol. 2015;25:126-32. doi: 10.1016/j.annepidem.2014.10.016. PubMed PMID: 25481078.
  29. Kaplan M, Hammerman C, Renbaum P, Klein G, Levy-Lahad E. Gilbert’s syndrome and hyperbilirubinaemia in ABO-incompatible neonates. Lancet. 2000;356:652-3. doi: 10.1016/S0140-6736(00)02610-6. PubMed PMID: 10968441.
  30. Yu C, Li H, Zhang Q, He H, Chen X, Hua Z. Report about term infants with severe hyperbilirubinemia undergoing exchange transfusion in Southwestern China during an 11-year period, from 2001 to 2011. PLoS One. 2017;12:e0179550. doi: 10.1371/journal.pone.0179550. PubMed PMID: 28662083; PubMed Central PMCID: PMCPMC5491324.
  31. Johnson L, Bhutani VK, Karp K, Sivieri EM, Shapiro SM. Clinical report from the pilot USA Kernicterus Registry (1992 to 2004). J Perinatol. 2009;29:S25-45. doi: 10.1038/jp.2008.211. PubMed PMID: 19177057.
  32. Ogunlesi TA, Dedeke IO, Adekanmbi AF, Fetuga MB, Ogunfowora OB. The incidence and outcome of bilirubin encephalopathy in Nigeria: a bi-centre study. Niger J Med. 2007;16:354-9. PubMed PMID: 18080595.
  33. Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 2006;175:587-90. doi: 10.1503/cmaj.060328. PubMed PMID: 16966660; PubMed Central PMCID: PMCPMC1559442.
  34. Hemmati F, Saki F, Saki N, Haghighat M. Gilbert syndrome in Iran, Fars Province. Ann Saudi Med. 2010;30:84. doi: 10.4103/0256-4947.59376. PubMed PMID: 20103965; PubMed Central PMCID: PMCPMC2850189.
  35. Iba T, Watanabe E, Umemura Y, Wada T, Hayashida K, Kushimoto S, et al. Sepsis-associated disseminated intravascular coagulation and its differential diagnoses. J Intensive Care. 2019;7:32. doi: 10.1186/s40560-019-0387-z. PubMed PMID: 31139417; PubMed Central PMCID: PMCPMC6528221.
  36. Yachie A. Heme Oxygenase-1 Deficiency and Oxidative Stress: A Review of 9 Independent Human Cases and Animal Models. Int J Mol Sci. 2021;22. doi: 10.3390/ijms22041514. PubMed PMID: 33546372; PubMed Central PMCID: PMCPMC7913498.
  37. Osiak W, Watroba S, Kapka-Skrzypczak L, Kurzepa J. Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. Oxid Med Cell Longev. 2020;2020:7140496. doi: 10.1155/2020/7140496. PubMed PMID: 32908636; PubMed Central PMCID: PMCPMC7450323.
  38. Hackney DN, Knudtson EJ, Rossi KQ, Krugh D, O’Shaughnessy RW. Management of pregnancies complicated by anti-c isoimmunization. Obstet Gynecol. 2004;103:24-30. doi: 10.1097/01.AOG.0000109206.22354.2C. PubMed PMID: 14704240.
  39. Joy SD, Rossi KQ, Krugh D, O’Shaughnessy RW. Management of pregnancies complicated by anti-E alloimmunization. Obstet Gynecol. 2005;105:24-8. doi: 10.1097/01.AOG.0000149153.93417.66. PubMed PMID: 15625137.