Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Pharmacology and Toxicology, Mustansiriyah University, College of Pharmacy, Baghdad, Iraq

2 Dean of College of Pharmacy, Al-Nahrain University, Baghdad, Iraq

3 Al-Bayan University, College of Pharmacy, Baghdad, Iraq

10.30476/ijms.2023.98947.3102

Abstract

Background: Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice.
Methods: Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. 
Results: FQ reduced IL-1β (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively.
Conclusion: All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.

Keywords

  1. Cron RQ, Goyal G, Chatham WW. Cytokine Storm Syndrome. Annu Rev Med. 2023;74:321-37. doi: 10.1146/annurev-med-042921-112837. PubMed PMID: 36228171.
  2. Rizvi MS, Gallo De Moraes A. New Decade, Old Debate: Blocking the Cytokine Pathways in Infection-Induced Cytokine Cascade. Crit Care Explor. 2021;3:e0364. doi: 10.1097/CCE.0000000000000364. PubMed PMID: 33786440; PubMed Central PMCID: PMCPMC7994048.
  3. Kim JS, Lee JY, Yang JW, Lee KH, Effenberger M, Szpirt W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021;11:316-29. doi: 10.7150/thno.49713. PubMed PMID: 33391477; PubMed Central PMCID: PMCPMC7681075.
  4. Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol. 2020;11:583777. doi: 10.3389/fphar.2020.583777. PubMed PMID: 33708109; PubMed Central PMCID: PMCPMC7941276.
  5. Niu X, Liu F, Li W, Zhi W, Yao Q, Zhao J, et al. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-kappaB signaling pathway. Biomed Pharmacother. 2017;95:1091-102. doi: 10.1016/j.biopha.2017.09.029. PubMed PMID: 28922728.
  6. Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid Med Cell Longev. 2020;2020:8825387. doi: 10.1155/2020/8825387. PubMed PMID: 33488935; PubMed Central PMCID: PMCPMC7790550.
  7. Tiwari R, Siddiqui MH, Mahmood T, Farooqui A, Bagga P, Ahsan F, et al. An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin. Clinical Phytoscience. 2020;6:1-18. doi: 10.1186/s40816-020-00228-2.
  8. Sahib HB, Kathum OA, Alanee RS, Jawad RAM, Al-Shammari AM. The Anti-Cytokine Storm Activity of Quercetin Zinc and Vitamin C Complex. Adv Virol. 2022;2022:1575605. doi: 10.1155/2022/1575605. PubMed PMID: 35721668; PubMed Central PMCID: PMCPMC9200564.
  9. Nguemfo EL, Mbock AJ, Zangueu Bogning C, Magne Fongang AL, Belle Ebanda Kedi P, Dongmo AB. Acute and sub-acute toxicity assessment of aqueous leaves extract of Crassocephalum crepidioides (Asteraceae) in Wistar rats. J Complement Integr Med. 2020;18:295-302. doi: 10.1515/jcim-2020-0018. PubMed PMID: 34187129.
  10. Sahib HB, Hamid ZM. The Acute Toxicity of Rutin in Mice. Iraqi Journal of Pharmaceutical Sciences. 2021;30:231-40. doi: 10.31351/vol30iss2pp231-240.
  11. An X, Sun X, Hou Y, Yang X, Chen H, Zhang P, et al. Protective effect of oxytocin on LPS-induced acute lung injury in mice. Sci Rep. 2019;9:2836. doi: 10.1038/s41598-019-39349-1. PubMed PMID: 30808956; PubMed Central PMCID: PMCPMC6391417.
  12. Baranova IN, Souza AC, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, et al. Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice. J Immunol. 2016;196:3135-47. doi: 10.4049/jimmunol.1501709. PubMed PMID: 26936883; PubMed Central PMCID: PMCPMC4856165.
  13. Sarfraz I, Rasul A, Jabeen F, Younis T, Zahoor MK, Arshad M, et al. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities. Evid Based Complement Alternat Med. 2017;2017:4269868. doi: 10.1155/2017/4269868. PubMed PMID: 29279716; PubMed Central PMCID: PMCPMC5723943.
  14. Topdagi O, Tanyeli A, Akdemir FNE, Eraslan E, Guler MC, Comakli S. Preventive effects of fraxin on ischemia/reperfusion-induced acute kidney injury in rats. Life Sci. 2020;242:117217. doi: 10.1016/j.lfs.2019.117217. PubMed PMID: 31884094.
  15. Ma X, Liu X, Feng J, Zhang D, Huang L, Li D, et al. Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability. Inflammation. 2019;42:1901-12. doi: 10.1007/s10753-019-01052-8. PubMed PMID: 31273573.
  16. Lei L, Chai Y, Lin H, Chen C, Zhao M, Xiong W, et al. Dihydroquercetin Activates AMPK/Nrf2/HO-1 Signaling in Macrophages and Attenuates Inflammation in LPS-Induced Endotoxemic Mice. Front Pharmacol. 2020;11:662. doi: 10.3389/fphar.2020.00662. PubMed PMID: 32508636; PubMed Central PMCID: PMCPMC7248193.
  17. Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem. 2016;423:53-65. doi: 10.1007/s11010-016-2824-9. PubMed PMID: 27665434.
  18. Dibal NI, Garba SH, Jacks TW. Acute toxicity of quercetin from onion skin in mice. Pharmaceutical and Biomedical Research. 2020;6:269-76. doi: 10.18502/pbr.v6i4.5113.
  19. Beekmann K, Rubio L, de Haan LH, Actis-Goretta L, van der Burg B, van Bladeren PJ, et al. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Food Funct. 2015;6:1098-107. doi: 10.1039/c5fo00076a. PubMed PMID: 25765892.
  20. Li W, Li W, Zang L, Liu F, Yao Q, Zhao J, et al. Fraxin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting the NF-kappaB and NLRP3 signalling pathways. Int Immunopharmacol. 2019;67:1-12. doi: 10.1016/j.intimp.2018.12.003. PubMed PMID: 30530164.
  21. Chang BY, Jung YS, Yoon CS, Oh JS, Hong JH, Kim YC, et al. Fraxin Prevents Chemically Induced Hepatotoxicity by Reducing Oxidative Stress. Molecules. 2017;22. doi: 10.3390/molecules22040587. PubMed PMID: 28383514; PubMed Central PMCID: PMCPMC6154468.
  22. Ekinci-Akdemi RF, Bi Ngol C, Yildirim S, Kandemi RF, Kucukler S, Saglam YS. The investigation of the effect of fraxin on hepatotoxicity induced by cisplatin in rats. Iran J Basic Med Sci. 2020;23:1382-7. doi: 10.22038/ijbms.2020.38773.9200. PubMed PMID: 33235694; PubMed Central PMCID: PMCPMC7671420.
  23. Yang S, Yu Z, Wang L, Yuan T, Wang X, Zhang X, et al. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. J Ethnopharmacol. 2017;200:147-55. doi: 10.1016/j.jep.2017.02.013. PubMed PMID: 28192201.
  24. Diniz LRL, Souza MTS, Duarte ABS, Sousa DP. Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury. Molecules. 2020;25. doi: 10.3390/molecules25235772. PubMed PMID: 33297540; PubMed Central PMCID: PMCPMC7730372.
  25. Meng L, Lv Z, Yu ZZ, Xu D, Yan X. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression. Genet Mol Res. 2016;15. doi: 10.4238/gmr.15037265. PubMed PMID: 27525872.
  26. Cui W, Hu G, Peng J, Mu L, Liu J, Qiao L. Quercetin Exerted Protective Effects in a Rat Model of Sepsis via Inhibition of Reactive Oxygen Species (ROS) and Downregulation of High Mobility Group Box 1 (HMGB1) Protein Expression. Med Sci Monit. 2019;25:5795-800. doi: 10.12659/MSM.916044. PubMed PMID: 31377749; PubMed Central PMCID: PMCPMC6691752.
  27. Lucida H, Primadini Y. A study on the acute toxicity of quercetin solid dispersion as a potential nephron protector. Rasayan Journal of Chemistry. 2019;12:727-32. doi: 10.31788/RJC.2019.1224068.
  28. Lopez-Carreras N, Fernandez-Vallinas S, Miguel M, Aleixandre A. Long-Term Effect of an Aqueous Fraxinus excelsior L. Seed Extract in Spontaneously Hypertensive Rats. Int J Hypertens. 2014;2014:565212. doi: 10.1155/2014/565212. PubMed PMID: 24696778; PubMed Central PMCID: PMCPMC3948598.
  29. Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem. 2019;69:19-30. doi: 10.1016/j.jnutbio.2019.03.009. PubMed PMID: 31048206.
  30. Nam PC, Thong NM, Hoa NT, Quang DT, Hoang LP, Mechler A, et al. Is natural fraxin an overlooked radical scavenger? RSC Adv. 2021;11:14269-75. doi: 10.1039/d1ra01360b. PubMed PMID: 35423974; PubMed Central PMCID: PMCPMC8697747.
  31. Yao H, Zhao J, Song X. Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-gamma/NF-kappaB pathway. Brain Res Bull. 2022;187:49-62. doi: 10.1016/j.brainresbull.2022.06.010. PubMed PMID: 35772607.
  32. Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, et al. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res. 2021;35:4727-47. doi: 10.1002/ptr.7104. PubMed PMID: 34159683.
  33. Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology. 2023;31:1117-47. doi: 10.1007/s10787-023-01206-z. PubMed PMID: 37022574.
  34. Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-kappaB and MAPK signaling pathways. Phytother Res. 2019;33:756-67. doi: 10.1002/ptr.6268. PubMed PMID: 30637814.
  35. Zhao L, Cen F, Tian F, Li MJ, Zhang Q, Shen HY, et al. Combination treatment with quercetin and resveratrol attenuates high fat diet-induced obesity and associated inflammation in rats via the AMPKalpha1/SIRT1 signaling pathway. Exp Ther Med. 2017;14:5942-8. doi: 10.3892/etm.2017.5331. PubMed PMID: 29285143; PubMed Central PMCID: PMCPMC5740593.