Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

Naser Abbasi, Afra Khosravi, Ali Aidy, Massoumeh Shafiei

Abstract


Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether a cytoprotective concentration range of luteolin could be separated from a cytotoxic concentration range in human MG-63 osteoblast-like cells in high-glucose condition.
Methods: Cells were cultured in a normal- or high-glucose medium. Cell viability was determined with the MTT assay. The formation of intracellular reactive oxygen species (ROS) was measured using probe 2’,7’ -dichlorofluorescein diacetate, and osteogenic differentiation was evaluated with an alkaline phosphatase bioassay.
Results: ROS generation, reduction in alkaline phosphatase activity, and cell death induced by high glucose were inhibited by lower concentrations of luteolin (EC50, 1.29±0.23 µM). Oxidative stress mediated by high glucose was also overcome by N-acetyl-L-cysteine. At high concentrations, luteolin caused osteoblast cell death in normal- and high-glucose states (IC50, 34±2.33 and 27±2.42 µM, respectively), as represented by increased ROS and decreased alkaline phosphatase activity.
Conclusion: Our results indicated that the cytoprotective action of luteolin in glucotoxic condition was manifested in much lower concentrations, by a factor of approximately 26 and 20, than was its cytotoxic activity, which occurred under normal or glucotoxic condition, respectively.


Keywords


Luteolin, Human osteoblast-like MG-63 cells, High glucose, Oxidative stress, Alkaline phosphatase

Full Text:

PDF

References


Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone, sweet bone--osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297-305. doi: 10.1038/nrendo.2011.233. PubMed PMID: 22249517.

Lozano D, de Castro LF, Dapia S, Andrade-Zapata I, Manzarbeitia F, Alvarez-Arroyo MV, et al. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology. 2009;150:2027-35. doi: 10.1210/en.2008-1108. PubMed PMID: 19196804.

Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007;39:871‑5. doi: 10.1055/s-2007-991157. PubMed PMID: 17960513.

Hamada Y, Fujii H, Fukagawa M. Role of oxidative stress in diabetic bone disorder. Bone. 2009;45:S35-8. doi: 10.1016/j.bone.2009.02.004. PubMed PMID: 19232402.

Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun. 2004;314:197-207. PubMed PMID: 14715266.

Jehle PM, Jehle DR, Mohan S, Bohm BO. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in Type 1 and Type 2 diabetes mellitus patients. J Endocrinol. 1998;159:297-306. doi: 10.1677/joe.0.1590297 PubMed PMID: 9795371.

Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56:6185-205. doi: 10.1021/jf8006568. PubMed PMID: 18593176.

Dang ZC, Lowik C. Dose-dependent effects of phytoestrogens on bone. Trends Endocrinol Metab. 2005;16:207-13. doi: 10.1016/j.tem.2005.05.001. PubMed PMID: 15922618.

Zarzuelo A, Jimenez I, Gamez MJ, Utrilla P, Fernadez I, Torres MI, et al. Effects of luteolin 5-O-beta-rutinoside in streptozotocin-induced diabetic rats. Life Sci. 1996;58:2311‑6. PubMed PMID: 8649220.

Park JA, Ha SK, Kang TH, Oh MS, Cho MH, Lee SY, et al. Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci. 2008;82:1217-23. doi: 10.1016/j.lfs.2008.03.021. PubMed PMID: 18508086.

Nam TW, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab. 2008;26:551-60. doi: 10.1007/s00774-008-0864-2. PubMed PMID: 18979154.

Kotanidou A, Xagorari A, Bagli E, Kitsanta P, Fotsis T, Papapetropoulos A, et al. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med. 2002;165:818-23. doi: 10.1164/ajrccm.165.6.2101049. PubMed PMID: 11897650.

Choi EM. Modulatory effects of luteolin on osteoblastic function and inflammatory mediators in osteoblastic MC3T3-E1 cells. Cell Biol Int. 2007;31:870-7. doi: 10.1016/j.cellbi.2007.01.038. PubMed PMID: 17368935.

Lai CH, Wu YW, Yeh SD, Lin YH, Tsai YH. Effects of 6-Hydroxyflavone on Osteoblast Differentiation in MC3T3-E1 Cells. Evid Based Complement Alternat Med. 2014;2014:924560. doi: 10.1155/2014/924560. PubMed PMID: 24795772; PubMed Central PMCID: PMC3984785.

Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T, et al. Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res. 1995;10:1050-6. doi: 10.1002/jbmr.5650100709. PubMed PMID: 7484280.

Sladowski D, Steer SJ, Clothier RH, Balls M. An improved MTT assay. J Immunol Methods. 1993;157:203-7. PubMed PMID: 8423364.

Zhu H, He M, Bannenberg GL, Moldeus P, Shertzer HG. Effects of glutathione and pH on the oxidation of biomarkers of cellular oxidative stress. Arch Toxicol. 1996;70:628‑34. doi: 10.1007/s002040050321. PubMed PMID: 8870955.

Sabokbar A, Millett PJ, Myer B, Rushton N. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Miner. 1994;27:57-67. doi: 10.1016/S0169-6009(08)80187-0. PubMed PMID: 7849547.

Suh KS, Rhee SY, Jung WW, Kim NJ, Jang YP, Kim HJ, et al. Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. Int J Mol Med. 2013;32:241-50. doi: 10.3892/ijmm.2013.1371. PubMed PMID: 23652775.

Pierschbacher MD, Dedhar S, Ruoslahti E, Argraves S, Suzuki S. An adhesion variant of the MG-63 osteosarcoma cell line displays an osteoblast-like phenotype. Ciba Found Symp. 1988;136:131-41. doi: 10.1002/9780470513637.ch9. PubMed PMID: 3068006.

Pegueroles M, Aguirre A, Engel E, Pavon G, Gil FJ, Planell JA, et al. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. J Mater Sci Mater Med. 2011;22:617-27. doi: 10.1007/s10856-011-4229-3. PubMed PMID: 21258846.

Fatokun AA, Stone TW, Smith RA. Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: The effects of glutamate and protection by purines. Bone. 2006;39:542-51. doi: 10.1016/j.bone.2006.02.062. PubMed PMID: 16616712.

Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int. 2003;14:S2-8. doi: 10.1007/s00198-002-1340-9. PubMed PMID: 12730770.

Xie F, Wu CF, Lai WP, Yang XJ, Cheung PY, Yao XS, et al. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evid Based Complement Alternat Med. 2005;2:353-61. doi: 10.1093/ecam/neh101. PubMed PMID: 16136213; PubMed Central PMCID: PMC1193542.

Lee KH, Choi EM. Myricetin, a naturally occurring flavonoid, prevents 2-deoxy-D-ribose induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells. Eur J Pharmacol. 2008;591:1-6. doi: 10.1016/j.ejphar.2008.06.004. PubMed PMID: 18599037.

Crasto GJ, Kartner N, Yao Y, Li K, Bullock L, Datti A, et al. Luteolin inhibition of V-ATPase a3-d2 interaction decreases osteoclast resorptive activity. J Cell Biochem. 2013;114:929-41. doi: 10.1002/jcb.24434. PubMed PMID: 23129004.

Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, et al. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol. 2004;485:89-96. doi: 10.1016/j.ejphar.2003.11.058. PubMed PMID: 14757127.

Abbasi N, Akhavan MM, Rahbar-Roshandel N, Shafiei M. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2. Phytother Res. 2014;28:1301-7. doi: 10.1002/ptr.5128. PubMed PMID: 25201753.

Braun KF, Ehnert S, Freude T, Egana JT, Schenck TL, Buchholz A, et al. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD‑1. ScientificWorldJournal. 2011;11:2348‑57. doi: 10.1100/2011/471426. PubMed PMID: 22203790; PubMed Central PMCID: PMC3236410.

Sun L, Zhang J, Lu X, Zhang L, Zhang Y. Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem Toxicol. 2011;49:2689-96. doi: 10.1016/j.fct.2011.07.042. PubMed PMID: 21802475.

Kim HS, Suh KS, Ko A, Sul D, Choi D, Lee SK, et al. The flavonoid glabridin attenuates 2-deoxy-D-ribose-induced oxidative damage and cellular dysfunction in MC3T3-E1 osteoblastic cells. Int J Mol Med. 2013;31:243-51. doi: 10.3892/ijmm.2012.1172. PubMed PMID: 23128413.

Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA, Parmar MY, Ahmed MM. Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr. 2013;5:5. doi: 10.1186/1758-5996-5-5. PubMed PMID: 23384060; PubMed Central PMCID: PMC3582624.

Feng J, Shi Z, Ye Z. Effects of metabolites of the lignans enterolactone and enterodiol on osteoblastic differentiation of MG-63 cells. Biol Pharm Bull. 2008;31:1067-70. doi: 10.1248/bpb.31.1067. PubMed PMID: 18520031.

Kim SY, Lee JY, Park YD, Kang KL, Lee JC, Heo JS. Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells. PLoS One. 2013;8:e67504. doi: 10.1371/journal.pone.0067504. PubMed PMID: 23840726; PubMed Central PMCID: PMC3696082.

Nordeen SK, Bona BJ, Jones DN, Lambert JR, Jackson TA. Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Horm Cancer. 2013;4:293-300. doi: 10.1007/s12672-013-0150-1. PubMed PMID: 23836117; PubMed Central PMCID: PMC3851288.

Ueda H, Yamazaki C, Yamazaki M. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull. 2003;26:560-3. doi: 10.1248/bpb.26.560. PubMed PMID: 12673045.

Seelinger G, Merfort I, Wolfle U, Schempp CM. Anti-carcinogenic effects of the flavonoid luteolin. Molecules. 2008;13:2628-51. doi: 10.3390/molecules13102628. PubMed PMID: 18946424.


View Counter: Abstract | 1148 | and PDF | 0 |

Refbacks

  • There are currently no refbacks.


pISSN: 0253-0716         eISSN: 1735-3688