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Abstract 
Background: It has been suggested that organophosphates 
may inhibit gamma-aminobutyric acid (GABA) metabolism in 
synaptosomal preparations. In the present investigation, we 
have assessed the interaction between paraoxon and the 
GABA system at synaptic level. 
 
Methods: Synaptosomes were prepared from male Wistar rats 
(200-250 g). Cerebral cortex was dissected and homogenized, 
then centrifuged at 1000g for 5 min and again at 12000g for 
20 min. The pellet containing synaptosomes was resuspended 
in the buffer solution and the protein concentration adjusted at 
1 mg/ml. Determination of lactate dehydrogenase (LDH) ac-
tivity, as a biochemical index for synaptosomal integrity, was 
assessed. Cholinesterase activity of synaptosomes was also 
determined. Synaptosomes were preincubated for 20 min with 
two concentrations of paraoxon (10-9-10-3M), and then incu-
bated with [3H]GABA for 10 min, before being washed 
through 0.65 μm filters. 
 
Results: Paraoxon inhibited cholinesterase activity of synap-
tosomes in a concentration dependent manner. Synaptosomal 
accumulation of [3H] GABA/GABA was time dependent and 
peaked at 15 min. Paraoxon significantly increased the up-
take in nano molar concentrations and decreased it at higher 
concentrations. 
 
Conclusion: The result of this study indicate that in synapto-
somes prepared from rat cerebral cortex paraoxon increases 
GABA uptake at low dose and inhibits its uptake at high doses. 
This may imply a role for organophosphate-induced convul-
sion, which needs further clarification. 
Iran J Med Sci 2006; 31(3):125-130. 
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Introduction 

rganophosphates (OPs) are toxic substances used as 
pesticides, insecticides, and chemical warfare agents 
and their use has raisen thremnedously.1,2 Because of 

its stability in aqueous solutions, parathion among OPs is regu-
larly used as an insecticide and most likely is responsible for 
most accidental poisonings.3,4 

The most striking clinical symptom in OPs poisoning is sei-
zure or convulsion.5 Neural injuries induced by OPs have 
strong associations with OP-induced seizures.6 Although, the 
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main mechanism of OPs is cholinesterase in-
hibition leading to the accumulation of acetyl-
choline; their non-cholinergic effects are re-
cently have attracted more attention.7 Many 
investigators have indicated that, in addition to 
cholinergic system, other neurotransmitters 
may be involved in OP-induced convulsions.7-11 

On the other hand, medical doctrine for 
nerve agent assault, including pyridostigmine 
pretreatment followed by anticholinergic and 
oxime therapy, does not ameliorate nerve 
agent-induced seizure activity.5,8 It has been 
proposed that the increased seizure suscepti-
bility may be due to instabilities in neuronal 
networks caused by excessive excitatory 
transmission and/or impaired inhibitory trans-
mission mediated by the amino acid transmit-
ters such as glutamate or gamma-amino butyric 
acid (GABA) respectively.12 McDonough and 
colleagues have reported that changes in the 
GABA level during nerve agent convulsion are 
controversial and it is unlikely that brain GABA 
system cause OP-induced seizures.5 It has been 
suggested that nerve agents may inhibit GABA 
metabolism in synaptosomal preparations.5 

Paraoxon is the metabolic product of para-
thion which causes cholinesterase inhibition 
with low propensity to aging and good reacti-
vatability.13 Keeping in mind the above notion it 
is possible that organophosphates affect 
GABA turnover in the brain. Synaptosomes 
constitute a useful in vitro model to study neu-
rotransmitter uptake and release because they 
retain many properties of nerve endings.14 It is 
reported that synaptosomal GABA content 
may change differently from whole brain GABA 
content,15 therefore, we have attempted to de-
termine the effect of paraoxon on GABA up-
take by the rat cortical synaptosomes. 
 
Materials and Methods 
 
Male Wistar rats (200-250 g) were kept in 
22±2ºC and 12h/12h light dark cycle. Their 
access to food and water was ad libitum. All 
animal experiments were according to the es-
tablished protocols by the Ethical Committee of 
the University. 
 
Synaptosome preparation 

Synaptosomes were prepared as previously 
described by Raiteri and colleagues.16 In brief, 
rat cerebral cortex was dissected and ho-
mogenized in 0.32 M sucrose in 100 mM 
phosphate buffer, pH=7.40. The homogenate 
was then centrifuged at 1000g for five min in 
order to remove cell debris and then the su-
pernatant was re-centrifuged at 12000g for 
another 20 min. The pellet, containing synap-
tosomes, was resuspended in buffer solution 

containing (in mM): [NaCl= 125, KCl= 3, 
MgSO4= 1.2, CaCl2= 1.2, NaHCO3= 22, 
NaH2PO4= 1] and pH= 7.4, oxygenated with 
95% O2 and 5% CO2. Protein concentration 
was adjusted at 1 mg.ml-1. In [3H]GABA (Amer-
sham; UK) uptake experiments synaptosomes 
prepared from three rats were used in triplicate 
for each paraoxon concentration. There was a 
control group in each run of experiments. 

Protein concentration determined by Bradford 
method,17 and bovine serum albumin (BSA, 
Fluka; Swiss) was used as standard. Determina-
tion of LDH activity, as a biochemical proof for 
synaptosomal integrity, was assessed with re-
duction of pyruvate to lactate.18 Oxidation of 
NADH to NAD+ was also monitored at 339 nm 
using Spectrophotometer (LKB Biochrom No-
vaspec, UK). Synaptosomal LDH activity was 
measured in the presence (total activity) and the 
absence (free activity) of 1% Triton X-100 and 
values expressed as percent of total. Choli-
nesterase activity was determined by Ellman 
method as previously described by Dietz.19 
 
[3H]GABA uptake assay 

Synaptosomes (1mg protein/ml) aliquoted 
into 0.5 ml, then 10 μM Aminooxyacetic acid 
(AOAA, Sigma; Germany) was used to prevent 
GABA metabolism during experiment. Synap-
tosomes were preincubated for 20 min with 
paraoxon (10-9-10-3M), and incubated with 400 
nM GABA (1% of which was tritiated) for 10 
min at 37ºC subsequently reaction was 
stopped by 1 ml of cold saline. Synaptosomes 
were layered on 0.65 μm filters (Millipore), af-
ter three times washing, the filter radioactivity 
were counted with liquid scintillation counter. 
Specific GABA uptake was calculated as total 
uptake minus uptake in presence of 50 mM 
nipecotic acid (an inhibitor of GABA uptake). In 
time course studies uptake was measured af-
ter 2.5, 5, 7.5, 10, 15, 20, and 30 min exposure 
of synaptosomes to [3H]GABA/GABA. 

Data are expressed as mean±SEM. Com-
parison between groups was done by paired 
Students' t test or One-way ANOVA with 
Tukey’s HSD test if necessary and P<0.05 was 
considered as statistically significant. 
 
Results 
 
LDH activity 

When expressed as percent of total, oc-
cluded and free LDH activity were 87±1% and 
13±1% respectively (P<0.05, n=8). Total LDH 
activity was 465±31 nmol/min.mg protein. In 
order to determine if high doses of paraoxon 
per se affects membrane integrity, we attempted 
to compare the occluded LDH activity before and 
after paraoxon exposure. Our results did not 
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demonstrate any significant variations (88% 
vs. 85%, n=3, duplicate, Fig. 1). 

Fig 1: Occluded and free LDH activity (percent of total) of 
synaptosomes. Occluded LDH activity was significantly 
higher than free, which indicated synaptosomes had 
membrane integrity (P<0.001). Total LDH activity was 
465±31 nmol/min.mg protein. 
 
Cholinesterase activity 

Paraoxon inhibited cholinesterase activity 
of synaptosomes, and this inhibition was con-
centration-dependent. 50% inhibitory concen-
tration of Paraoxon (IC50) for cholinesterase 
inhibition was approximately 10 nM (Fig. 2). 

Fig 2: synaptosomal cholinesterase inhibition by paraoxon. 
IC50 for inhibition is approximately 10 nM. Cholinesterase 
activity in control group was 78±7 nmol/min. mg protein.  
***: P<0.001 compare to control. 
 
Time dependency of [3H] GABA uptake 

Synaptosomal accumulation of [3H] GABA/ 
GABA was time dependent and peaked at 15 
min. [3H] GABA uptake were 22, 35, 49, 72, 
101, 100, and 100 pmol/mg proteins at 2.5, 5, 
7.5, 10, 15, 20, and 30 min passed the begin-
ning of incubation respectively. The increase 
was not significant until 10 minutes through 
incubation time (Fig. 3). 

Fig 3: Time dependency of GABA uptake. Uptake reached 
a maximum at 15 min. 
 
Effect of paraoxon on [3H] GABA uptake 

Paraoxon had a quasi-biphasic effect on 
[3H] GABA uptake in rat cortical synaptosome. 
Paraoxon increased the uptake in nanomolar 
concentrations (10-9-10-6M) and decreased it in 
micromolar concentrations (10-5-10-3M). In-
crease in the uptake was significant at 10-8-10-

6M (P<0.01), albeit an observable increment at 
greater concentrations. The situation reversed 
at 10-3 M paraoxon, where the decrease in up-
take was statistically significant (P<0.05, Fig. 4). 

Fig 4: Effect of paraoxon on [3H]GABA uptake by rat brain 
synaptosome. *: P<0.05, **: P<0.01, compare to control. 
[3H]GABA uptake in control group was 55±3 pmol/mg protein. 
 
Discussion 
 
In this study we found that paraoxon had a 
dual effect on GABA uptake. It increased the 
uptake at nanomolar concentrations and de-
creased it at higher doses. Paraoxon did not 
invade membrane integrity, as confirmed by 
LDH experiments. 
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Similar values of LDH activity before and af-
ter paraoxon exposure indicated that paraoxon 
did not disrupt membrane integrity.20 In addi-
tion, occluded LDH activity was 87% of total, a 
value in good accordance with other re-
ports.21,22 We observed that synaptosomal 
[3H]GABA uptake had time dependency and 
reached to its maximum value at 15 min. This 
result in part is consistent with the reports of 
Sutch and colleagues demonstrated that 
[3H]GABA uptake in the rat cortical synapto-
some was maximum at 20 min.23 Neal and 
Iversen (1969) suggested that isolated synap-
tosome accumulate [3H]GABA in a time de-
pendent manner.24 Low doses of paraoxon 
increased GABA uptake while its high doses 
had an opposite effect. This finding is some-
what supported by the results of Ho et al. who 
found that toxic doses of diisopropylphos-
phofluoridate, an Ops, increased and then de-
creased GABA uptake after 6 and 24 hours 
respectively.25 Other researchers working on 
soman, another Op, have reported that it either 
does not affect GABA levels in the rat brain,26 
or it even increases it significantly in guinea pig 
cerebral cortex.27 Beckman et al. reported that 
muscarine (an agonist for muscarinic acetylcho-
line receptors) decreased [3H] GABA uptake in 
culture of rat hippocampus.28 Hence it is pos-
sible that high doses of paraoxon (possibly due 
to its cholinesterase inhibition or its direct ef-
fect) may activate muscarinic receptors result-
ing to a decrease in GABA uptake. 

Direct interactions of OPs with muscarinic 
receptors have been observed at concentra-
tions that inhibit cholinesterase or even at lower 
doses.29 Lotti et al. explained that in most 
cases, in vitro OP concentrations used to affect 
receptors directly were higher than those inhibit-
ing Acetylcholinesterase (AChE); therefore the 
toxicological significance of these direct interac-
tions is not understood.30 Szilagyi and cowork-
ers showed that 1-2 mM tabun (an OP agent) 
decreased [3H] GABA uptake in guinea pig 
cerebral cortex,31 which supports the inhibitory 
effect of the high dose (1mM) of paraoxon in 
this study, and provide an evidence for involve-
ment of GABA system in OP effects. 

Changes in the level and the function of 
GABA during nerve agent seizures have been 
controversial. Reports have showed that brain 
GABA levels were increased,5 decreased,32 or 
did not change in rats following organophos-
phate intoxication.33 A consequence of the ob-
served increase in GABA uptake is that it could 
reduce the amount of GABA in the synaptic 
cleft. This will reduce post-synaptic GABAA 
receptor or presynaptic GABAB receptor acti-
vation; GABAA receptors mediate inhibitory 
actions on post-synaptic sites while GABAB 

receptors reduce the release of excitatory 
amino acid transmitters,34 therefore, both may 
lead to excitation and probably to convulsion. 
Pharmacological blockade of GABA transport-
ers by tiagabine has inhibited seizure.35 

Increasing GABA uptake disturbs inhibi-
tion/excitation balance in benefit of excitation. 
This imbalance works in favor of hyperexcita-
bility and may lead to convulsions. This is, at 
least in part, against previous believes that the 
brain GABA system is the implausible cause of 
OP-induced seizures.5 Zhao et al. reported that 
GABA transporters might play an important 
role in epileptogenesis, and this may be re-
lated to alterations in balancing the excitatory 
and inhibitory synaptic interactions.35 In pre-
sent study paraoxon IC50 for cholinesterase 
inhibition was approximately 10 nM, although 
other IC50 values of 13.67 nM,36 and 20 nM,37 
were reported in other studies. 
 
Conclusion 
 
The results of this study show that paraoxon at 
low dose increased and at high dose decreased 
[3H] GABA uptake in synaptosomal preparations 
made from the rat cerebral cortex. This effect 
may suggest a role for GABA transporters in 
organophosphate-induced convulsion. 
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