
Exploring Differentially Expressed Genes and 
Immune Modulation in Diffuse Large B-Cell 
Lymphoma through RNA Sequencing Analysis

Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is 
globally recognized as the most prevalent and aggressive 
subtype of non-Hodgkin lymphoma. While conventional 
treatments are effective initially, the disease can become 
resistant or relapse over time. This study aimed to examine the 
differentially expressed genes at the transcriptome level and 
molecular pathways in DLBCL patients. 
Methods: This investigation utilized RNA sequencing 
analysis to compare differentially expressed gene samples 
from five diffuse large B-cell lymphoma patients with two 
healthy volunteers. These participants were admitted to UKM 
Medical Center, Kuala Lumpur between 2019 and 2020. The 
differentially expressed genes were identified using the DESeq2 
R package (version 1.10.1) using a negative binomial distribution 
model. The obtained P values were corrected with the Benjamin 
and Hochberg method and identified using a False Discovery 
Rate threshold of <0.05, with log2 fold change (FC) of ≥2 or ≤-2. 
Results: Results showed 73 differentially expressed genes between 
the two groups, among which 70 genes were downregulated, 
and three genes were upregulated. The differentially expressed 
genes analyzed with the Reactome pathway were significantly 
associated with the downregulation of antimicrobial humoral 
response (P<0.001), neutrophil degranulation (P<0.001), 
chemokine receptors bind chemokines (P=0.028), defensins 
(P=0.028) and metabolism of angiotensinogen (P=0.040). 
Conclusion: These findings suggest that the identified 
pathways may contribute to cancer progression and weaken the 
immune response in diffuse large B-cell lymphoma patients. 
This study offers fresh insights into previously undiscovered 
downstream targets and pathways modulated by diffuse large 
B-cell lymphoma.
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What’s Known

• The immune landscape in lymphoma 
comprises a diverse milieu of immune cells 
such as T cells, B cells, and macrophages, 
interacting with malignant lymphocytes. 
Immune checkpoints, cytokines, and 
genetic alterations influence responses. 
• Immunotherapies, targeting these 
dynamics, show promise in enhancing 
anti-lymphoma immunity and improving 
treatment outcomes.

What’s New

• There were 73 differentially 
expressed genes between diffuse large 
B-cell lymphoma patients and healthy 
controls, with 70 downregulated and three 
upregulated genes. 
• Antimicrobial humoral response, 
neutrophil degranulation and activation, 
chemokine response, and defensins 
pathways were significantly downregulated.
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Introduction

Cancer of the lymphatic system, lymphoma, can be categorized 
into two primary types: Hodgkin lymphoma (HL) and non-Hodgkin 
lymphoma (NHL). NHL is the most common type and the 10th 
most diagnosed cancer globally.1 The incidence of NHL was 
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544,352 cases in 2020 worldwide, accounting 
for 1.35% of all cancer cases reported.1 This 
is predicted to increase significantly each 
year. Lymphoma is a condition characterized 
by uncontrolled growth and multiplication of 
lymphocytes, a type of white blood cell. These 
cancerous lymphocytes can spread to various 
parts of the body such as the lymph nodes, 
spleen, bone marrow, blood, or other organs, 
forming a tumor mass. Two primary types of 
lymphocytes can transform into lymphomas: 
B lymphocytes (B cells) and T lymphocytes (T 
cells). B-cell lymphomas are significantly more 
prevalent than T-cell lymphomas and makeup 
roughly 85% of all NHLs.2 The most prevalent 
type of NHL is diffuse large B-cell lymphoma 
(DLBCL), which represents around 30% of newly 
diagnosed NHL cases globally.1 DLBCL affects 
both genders, with a slightly higher incidence 
in men. While it can manifest in childhood, 
its occurrence generally rises with age, and 
approximately half of those diagnosed are 60 
years old or older. DLBCL is a fast-progressing 
form of lymphoma that can develop in the 
lymph nodes or outside the lymphatic system, 
including the gastrointestinal tract, testes, 
thyroid, skin, breast, bone, or brain. Because 
of its rapid advancement, DLBCL typically 
demands immediate medical intervention. 
In some patients suffering from this type of 
lymphoma, a combination of chemotherapy 
(cyclophosphamide, doxorubicin, vincristine, 
and prednisone) and the monoclonal antibody 
rituximab (R-CHOP), with or without radiation 
therapy, can result in remission of the disease.3 

R-CHOP, administered in 21-day cycles, is the 
primary treatment for DLBCL and is typically the 
first course of action. While the initial treatment 
proves effective for certain patients, however, 
some patients may encounter disease relapse or 
develop refractory disease over time.4 One-third 
of patients still die from the disease. Therefore, 
understanding the molecular mechanisms 
that lead to the progression of the disease is 
crucial for tackling this problem effectively. 
Clinical studies have been utilizing ribonucleic 
acid sequencing (RNA-Seq) more frequently 
to identify alterations in gene expression.5 The 
RNA-Seq gene expression profile is commonly 
employed to incorporate various molecular events 
and mechanisms linked to the advancement 
of cancer. RNA-Seq has transcended the 
boundaries of the genomics community and 
has become a conventional research tool. This 
approach can serve various purposes, such as 
accurately detecting differentially expressed 
genes (DEGs). Additionally, RNA-Seq can 
facilitate the analysis of gene co-expression 

networks, pathways involved, and protein-to-
protein interactions. Moreover, this established 
and efficient screening method can be utilized 
to discover novel biomarkers and enhance our 
comprehension of cancer biology.6

Transcriptome analysis enables an unbiased 
screening of molecular alterations that take 
place in DLBCL compared to normal samples, 
facilitating the identification of target genes and 
pathways. The results have the potential to guide 
the development of new alternative treatment 
strategies that focus on pathways modulated in 
DLBCL. The aim of this study was to examine 
the DEGs at the transcriptome level and tumor-
promoting molecular pathways implicated in 
DLBCL patients in comparison with normal 
healthy volunteers using RNA-Seq analysis.

Patients and Methods

The research conducted followed the 
established protocols of the UKM Research 
Ethics Committee (UKM PPI/111/8/JEP-2016-
063). This involved acquiring ethical clearance 
and written consent. Before being included in the 
study, all participants who contributed samples 
gave informed consent.

Patients
Ten mL of blood samples from five primary 

DLBCL patients and two normal healthy 
volunteers who were admitted to UKM Medical 
Center, Kuala Lumpur, were recruited in this 
study according to the rules and regulations 
stated. The cases were histologically confirmed 
and diagnosed. Normal healthy volunteers 
were patients who came for annual screening 
and were diagnosed as healthy without any 
underlying disease.

Peripheral Blood Mononuclear Cell (PBMC)
Each patient donated 10 mL of fresh blood, 

which was collected in heparin tubes from BD 
Vacutainer™ (Beckton Dickinson, USA). After 
collection, the samples were kept at 4 °C until 
the PBMCs were isolated, which took place 
within 24 hours. The isolation was performed 
using Ficoll Paque PLUS™ density gradient 
media (GE Healthcare, USA) according to the 
manufacturer’s instructions. Subsequently, the 
cells were cryopreserved in a 10% dimethyl 
sulfoxide (DMSO) solution and stored in a liquid 
nitrogen tank at a temperature of -196 °C until 
required.

Ribonucleic acid (RNA) Extraction 
To extract RNA from PBMC, the RNeasy® 

Mini Kit (QIAGEN, Germany) was used 
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following the manufacturer’s instructions. The 
concentration and purity of the extracted RNA 
were measured using a NanoDrop ND-2000C 
spectrophotometer (Thermo Scientific, USA), 
and its quality was assessed using the Agilent 
2100 bio-analyser system. Samples that exhibited 
RNA concentrations exceeding 50 ng/µL,  
purity A260/A280 ratios ranging in the range 
of 1.80 to 2.20, and RNA integrity number 
(RIN) values greater than seven were chosen 
for additional analysis, on the condition that 
they demonstrated undamaged RNA devoid 
of any deoxyribonucleic acid (DNA) or protein 
contamination.

Library Preparation for Transcriptome Sequencing
To prepare the RNA samples for sequencing, 

1.3 μg of the total RNA was utilized as the 
input material. The NEBNext Ultra RNA Library 
Preparation Kit (New England Biolabs, Inc., 
USA) was utilized following the manufacturer’s 
instructions to create sequencing libraries. Index 
codes were added to the libraries to distinguish 
sequences from each sample. To isolate cDNA 
fragments selectively, which were 250-300 
base pair (bp) long, the library fragments were 
purified using the AMPure XP system (Beckman 
Coulter, Inc., Beverly, USA). Subsequently, the 
size-selected, adaptor-ligated cDNA was treated 
with 3 μL of the USER Enzyme (New England 
Biolabs, Inc., USA) at 37 ºC for 15 min, followed 
by 5 min of incubation at 95 ºC, before prior 
polymerase chain reaction (PCR). The PCR was 
conducted using Phusion High-Fidelity DNA 
polymerase, Universal PCR primers, and Index 
(X) Primer. The PCR products were purified 
using the AMPure XP system, and the quality 
of the library was assessed using the Agilent 
Bioanalyzer 2100 system (Agilent, USA). The 
RNA-Seq was carried out on the Illumina HiSeq 
150 platform (Illumina, Inc., USA).

Quality Control
To begin, the Fastq-formatted raw data, 

also known as raw reads, were subjected to 
processing using Perl scripts. The purpose of 
this processing step was to obtain clean reads 
by filtering out reads that contained adapters, 
poly-N, and low-quality sequences. Furthermore, 
the clean data’s Q20 and Q30 scores, as well as 
its GC content, were computed. The subsequent 
analyses were carried out using only high-quality 
clean data.

Reads Mapping to the Reference Genome
The Human Genome Build GRCh38 reference 

genome and gene model annotation files were 
directly obtained from the genome website. The 

reference genome index was constructed with 
Spliced Transcripts Alignment to a Reference 
(STAR) software package version 2.5.1b 
(National Human Genome Research Institute, 
USA), and paired-end clean reads were aligned 
to the reference genome using STAR. STAR 
utilized the maximal mappable prefix (MMP) 
approach, which provided an accurate mapping 
outcome for junction reads.

Quantification of Gene Expression Level
To enumerate the read numbers mapped to 

each gene, high-throughput sequencing (HTSeq) 
software package version 0.6.0 (Python, USA) 
was employed. The Fragments per Kilobase of 
transcript per Million mapped reads (FPKM) for 
each gene were then calculated based on its 
length and the count of mapped reads. FPKM 
accounts for both sequencing depth and gene 
length simultaneously and is presently the most 
widely employed approach for gene estimation. 

Gene Ontology (GO) and Reactome Enrichment 
Analysis of DEGs

The Cluster Profiler R package software 
package version 4.10.0 (Comprehensive R 
Archive Network, USA) was utilized to perform 
GO enrichment and Reactome Pathways 
analysis of DEGs while accounting for gene 
length bias. GO enrichments and Reactome 
Pathways with corrected P value<0.05 were 
regarded as significantly enriched by DEGs and 
selected for further downstream analysis. 

Protein-protein interaction (PPI) Analysis
Proteins encoded by the common DEGs 

were used to create a PPI network, which 
was generated and displayed via the STRING 
database (https://string-db.org/) and Cytoscape 
(https://cytoscape.org/). The networks were 
constructed by extracting the target gene list 
from the database for the species in question. 
If unavailable, Blast X software package version 
2.2.28 (National Center for Biotechnology 
Information, USA) aligned the target gene 
sequences with the reference protein 
sequences. The networks were built based on 
the established interaction data of the selected 
reference species.

Validation of DEGs by qualitative RT-PCR (qRT-
PCR) analysis 

To validate the upregulated and 
downregulated DEGs with log2 FC of ≥2 or ≤-2, 
qRT-PCR was conducted. Using the RNeasy® 
Mini Kit (QIAGEN, Germany) and following 
the manufacturer’s guidelines, total RNA 
was extracted from both DLBCL patients and 
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healthy volunteers. The RNA was subsequently 
assessed for concentration and purity using 
a NanoDrop ND-2000C spectrophotometer 
(Thermo Scientific, USA). Samples displaying 
RNA concentrations greater than 10 ng/µL 
and A260/A280 purity ratios between 1.70 
to 2.10 were chosen for qRT-PCR analysis. 
The qRT-PCR was performed using the 
Power SYBR® Green RNA-to-CT 1-Step 
Kit (Applied Biosystems, USA), with a 20 µL 
reaction volume. The reaction followed the 
manufacturer’s recommended thermal cycling 
conditions, and the Cycle Threshold (Ct) value 
was obtained through triplicate samples, utilizing 
the Applied Biosystems™ 7500 Fast Real-time 
PCR System machine (Applied Biosystems, 
USA). The internal control was Glyceraldehyde 
3-phosphate dehydrogenase (GAPDH), and the 
mean± SD based on triplicate experiments was 
used to present all findings.

Statistical Analysis 
For two conditions/groups (with two biological 

replicates per condition), DEG was conducted 
using the DESeq2 R package version 1.10.1 
(Bioconductor, USA). DESeq2 offers statistical 
algorithms to identify differential expression in 
digital gene expression data using a negative 
binomial distribution model. The obtained P 
values were corrected with the Benjamin and 
Hochberg method to control the false discovery 
rate (FDR), with adjusted P (Padj)<0.05 with a 
log2 FC of ≥2 or ≤-2 displayed.

The Student’s t test was utilized to analyze 
the qRT-PCR data. To assess the likelihood 
of obtaining the observed outcomes under the 
null hypothesis, P value statistics were used 
for analysis. The statistical significance of the 
observed difference increases as the P value 
decreases. Results with P<0.05 were regarded 
as significant. 

Results

Assessing Reproducibility of Biological 
Replicates 

To ensure the quality and reproducibility of 
the RNA-Seq analysis, the data underwent 
parametric quality control (QC) tests. These 
tests are essential to increase confidence in 
the results obtained from the data. The Cluster 
3.0 tool was used to plot gene body coverage, 
correlation matrix, and principal component 
analysis (PCA). Visualizing the similarities and 
differences within and between the DLBCL (L2, 
L3, L4, L5, and L6) and control samples (N1, 
N2) is crucial to this analysis. Figure 1 shows 
the PCA of all samples, indicating a strong 

correlation among them. However, the PCA 
analysis identified L4 as an outlier from the other 
DLBCL samples. 

Detecting Genes with Differential Expression 
By subjecting the transcriptomic data to 

bioinformatics analysis, significant alterations 
were identified in 13,679 genes in DLBCL cells 
compared to controls. Using a FDR threshold of 
<0.05 and plotting against the log2 FC≥2 and ≤-2, 
three upregulated genes and 70 downregulated 
genes were found (figure 2). 

A clustered heat map was utilized to exhibit 
the expression profiling of DEGs in DLBCL 
samples relative to control samples. A distinct 
gene expression pattern in DLBCL samples 
in contrast to controls was observed by the 
clustering of the heat map (data not shown). 

GO enrichment analysis of DEGs 
To gain a better understanding of the potential 

functions and roles of the identified DEGs in 
metabolic pathways, they were subjected to 
gene enrichment analysis. The analysis using 
GO terms identified 1163 unique groups and 
pathways. The functional groups of GO groups 
were determined based on their biological 
process (BP), molecular function (MF), and 
cellular component (CC) as identified through 
the enrichment analysis. Only the GO group 
with P≤0.05 was considered significant and 
subsequently chosen for further analysis. Out of 
80 significant GO groups, 54 were enriched in 
BP, 14 in CC, and 12 in molecular functions MF.

Figure 1: PCA analysis was performed between DLBCL 
(L2-L6) and control (N1-N2) samples. L: Lymphoma; N: 
Normal; PC1: Pairwise combination 1; PC2: Pairwise 
combination 2. PC shows the correlations between the 
principal components and the original variables based on 
the PCA formula.
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Our results indicated that the frequency of 
downregulated DEGs was higher than that of 
upregulated DEGs. In BP, the downregulated 
DEGs were significantly associated with 
granulocyte activation (Padj<0.001), neutrophil 
regulation (Padj<0.001), antimicrobial humoral 
immune response (Padj<0.001), and cell killing 
(Padj<0.001) (figure 3), while the upregulated 
DEGs were significantly correlated with T-cell 
regulations (Padj<0.001).  

As for CC, the DEGs that were downregulated 
exhibited a marked enrichment in the granule 

and vesicle lumen (Padj<0.001), while the 
upregulated DEGs were significantly enriched 
in the plasma membrane (Padj=0.004), and an 
extrinsic component of the ribonucleoprotein 
cytoplasmic side (Padj=0.014). 

Subsequently for MF, the downregulated 
DEGs were significantly associated with 
chemokine activity and binding (Padj=0.002), 
G-protein binding (Padj=0.002), oxidoreductase 
activity, and other protein bindings (Padj=0.026), 
while the upregulated DEGs were associated 
with enzyme activities (Padj=0.010).

Figure 2: This figure shows a volcano plot of DEGs (FDR<0.05) between DLBCL samples against the normal control samples 
(LvsN). The horizontal axis is the log2 fold change between DLBCL and control. The negative log10 of the P value of Fisher’s 
exact test is plotted on the vertical axis. Each gene is represented by one point on the graph. Volcano plot highlights top 
significant DEGs from DLBCL samples. Significantly upregulated genes are in red; significantly downregulated genes are in 
green color.

Figure 3: This figure shows the Gene ontology enrichment analysis of DLBCL samples against the normal control samples 
(LvsN). The enrichment involves BP categories for downregulated genes. *Denotes significant enrichment, P<0.05. 
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Significantly enriched pathway terms in DEGs 
The Reactome pathway analysis was used to 

determine the pathways that were significantly 
associated with the identified DEGs from 
DLBCL samples. To perform downstream 
analysis, only the GO and Reactome pathways 
with FDR scores of ≤0.05 were selected. To 
identify enriched GO and Reactome pathways, 
a phenotype against genotype analysis was 
conducted, and statistical significance was 
determined. Out of 20 Reactome pathways 
identified, only five were found to be significant, 
P<0.05 (figure. 4). The findings suggested 
that DEGs were prominent in several signaling 
pathways, including antimicrobial humoral 
response (Padj<0.001), neutrophil degranulation 
(Padj<0.001), chemokine receptors bind 
chemokines (Padj=0.028), defensins (Padj=0.028), 
and metabolism of angiotensinogen (Padj=0.040).

Validation of DEGs by qRT-PCR 
To validate the DEGs from the RNA-Seq 

data, qRT-PCR was conducted. Specifically, 
we focused on the downregulated DEGs, as 
they exhibited high significance compared to 
the upregulated ones. We selected DEGs with a 
log2 FC≥2 and ≤-2. The chosen downregulated 

genes were Cathelicidin antimicrobial peptide 
(CAMP), Defensin alpha 3 (DEFA3), Defensin 
alpha 4 (DEFA4), lactotransferrin (LTF), 
Membrane Spanning 4-Domains A3 (MS4A3), 
C-C chemokine receptor type 3 (CCR3), CXC 
chemokine receptor 2 (CXCR2), and CXC 
chemokine receptor 1 (CXCR1). The qRT-PCR 
results were consistent with those obtained 
from RNA-Seq, indicating the reliability and 
reproducibility of the findings (table 1).

Protein-protein interaction in DLBCL samples
A total of 12 protein pairs involved in DLBCL 

were identified among the DEGs with a string 
score of >400. Notably, no pairs were identified 
among the upregulated DEGs, while 12 pairs were 
identified among the downregulated DEGs. Table 
2 displays the 12 protein pairs with their respective 
string scores, which illustrates the PPI interaction.

Discussion

While some studies utilize frozen tumor tissue 
for DLBCL analyses,7, 8 our approach diverges by 
employing PBMCs. Unlike frozen tissue, which 
encompasses all genes in DLBCL, our study 
specifically targets immune-associated cells.  

Figure 4: This figure shows Reactome enrichment analysis for DLBCL samples against the normal control samples (LvsN). 
*Denotes significant enrichment analysis, P<0.05.

Table 1: Validation of qRT-PCR analysis on genes listed above
Genes CAMP MS4A3 LTF CCR3 DEFA3 DEF4A CXCR2 CXCR1
Fold change expression -1.51*** -1.2** -1.6*** -1.03 -1.12** -1.19 -1.09 -1.32***

The P values were determined using Student’s t test and are indicated in the table. Significance levels were set at P<0.05. 
The qRT-PCR results are in agreement with the RNA-Seq data. The P<0.05 were considered significant. Significance levels 
were labeled as **P<0.01, ***P<0.001.
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This distinction is crucial as our research 
zeroes in on the immune aspects of DLBCL, 
emphasizing the tumor microenvironment. In 
contrast to studies concentrating on long non-
coding RNA9 and miRNA,8 there is a noticeable 
gap in the literature concerning PBMC-focused 
investigations in DLBCL. Nevertheless, there 
are some studies that focus on immune 
infiltrates within cancer cells to represent the 
immune microenvironment in situ.7, 8 However, 
this method has limitations. It is inherently more 
difficult for obtaining the samples due to the 
invasive nature of the surgery and the challenges 
in taking repeated sampling. Our approach using 
PBMCs not only addresses these logistical 
challenges but also offers a patient-friendly 
avenue for continuous monitoring, allowing for 
a more comprehensive understanding of the 
dynamic immune landscape in DLBCL. This 
accessibility not only streamlines the diagnostic 
process but also facilitates ongoing monitoring of 
treatment regimes. The ability to obtain samples 
at different time points allows for a dynamic 
assessment of immune responses during the 
course of treatment, offering valuable insights 
for personalized and real-time therapeutic 
adjustments. 

Due to distinct focuses and variations in 
sampling methodologies, the results are not 
directly comparable. To the best of our knowledge, 
not many studies have specifically utilized PBMCs 
in the investigation of DLBCL using RNA-Seq. 
Nonetheless, the common findings among most 
of the studies including ours, indicate significant 
differences in the inflammatory responses, 
tumor-cell dissemination, tumor suppressor 
gene expression, and cell cycle.7, 8 

In our study, a significant decrease in 
the antimicrobial humoral response in tumor 
samples was observed. One of the key players 
in this response is the CAMP, which not only 

exhibits antibacterial, antifungal, and antiviral 
activities but also regulates inflammatory 
responses and tissue repair, acting via neutrophil 
N-formyl peptide receptors to enhance the 
release of chemokine C-X-C motif ligand 2 
(CXCL2).10 Thus, significant downregulation of 
CAMP may lead to a reduction in inflammatory 
responses and downstream pathways that are 
involved in eliminating cancer cells. This effect 
is supported by the downregulated genes 
in neutrophil degranulation and neutrophil 
degranulation. These findings suggest that there 
is a downregulation in neutrophil degranulation 
and inflammation in tumor samples, which may 
contribute to the progression of DLBCL. 

Defensins are peptides with cytotoxic 
properties that contribute to host defense and 
display antimicrobial activity. They are highly 
abundant in neutrophils.10 DEFA3 is involved 
in phagocyte-mediated host defense, while 
DEFA4 is primarily found in neutrophils. The 
downregulation of defensin expression in 
DLBCL patients is likely to affect the function 
and mechanism of neutrophil degranulation 
and inflammation in tumor samples, ultimately 
contributing to the progression of DLBCL cancer. 

LTF plays a significant role in regulating 
cellular growth, differentiation, and protection 
against cancer development and metastasis 
in various cancers.11 It exhibits anti-tumor and 
anti-metastatic properties.12 In the context of 
DLBCL, the downregulation of LTF removes its 
anti-tumor effects and attenuates capabilities 
toward cell growth and invasion. This allows 
DLBCL cells to proliferate and invade, leading to 
cancer development and metastasis. This study 
suggests that LTF is a potential therapeutic 
target for DLBCL and other cancers. 

The MS4A3 plays a role in modulating the 
G1-S cell cycle transition in hematopoietic cells 
by directly binding to cyclin-dependent kinase 

Table 2: The 12 protein pairs in the string score
Node 1
name

Node 1
protein

Node 2
name

Node 2
protein

Score

CEACAM6 9606.ENSP00000199764 CEACAM8 9606.ENSP00000244336 970
CTSG 9606.ENSP00000216336 CPA3 9606.ENSP00000296046 428
CTSG 9606.ENSP00000216336 DEFA3 9606.ENSP00000328359 506
LTF 9606.ENSP00000231751 TCN1 9606.ENSP00000257264 660
LTF 9606.ENSP00000231751 LCN2 9606.ENSP00000277480 414
CHI3L1 9606.ENSP00000255409 LCN2 9606.ENSP00000277480 416
TCN1 9606.ENSP00000257264 MS4A2 9606.ENSP00000278888 610
CXCR1 9606.ENSP00000295683 CXCR2 9606.ENSP00000319635 956
CXCR1 9606.ENSP00000295683 CCR3 9606.ENSP00000441600 918
CPA3 9606.ENSP00000296046 GATA2 9606.ENSP00000345681 448
DEFA4 9606.ENSP00000297435 DEFA3 9606.ENSP00000328359 907
CXCR2 9606.ENSP00000319635 CCR3 9606.ENSP00000441600 918
This table shows the 12 protein pairs for DEGs that are involved in DLBCL (string score>400). For the upregulated DEGs, 0 
pairs were identified, while 12 pairs were identified for downregulated DEGs



Differentially expressed genes in diffuse large B-cell lymphoma

Iran J Med Sci October 2024; Vol 49 No 10 659

(CDK) inhibitor 3 and altering the phosphorylation 
level of CDK-2, in addition to its function in LTF.13 
The downregulation of MS4A3 in DLBCL cells 
suggests the removal of negative regulation on 
the cell cycle and consequent upregulation of 
the G1-S cell cycle transition. This supports the 
cancer cells growth and metastasis. 

The increase in the numbers of downregulated 
genes associated with the chemokine-mediated 
signaling pathway as well as the CCR and 
CXCR activities imply a decrease in the 
responsiveness and function of chemokines in 
the tumor samples. 

CCR3 serves as a receptor for C-C-type 
chemokines, binding and responding to various 
chemokines such as eotaxin (CCL11), eotaxin-3 
(CCL26), monocyte chemotactic protein-3 
(MCP3) also known as CCL7, monocyte 
chemoattractant protein (MCP4) also known 
as CCL13, RANTES (CCL5), and chemokine 
(C-C motif) ligand 15 (CCL15).14 This receptor is 
highly expressed in eosinophils and basophils15 
and is also detected in Type 1 T helper cells 
(Th1) and Type 2 T helper cells (Th2).16 CCR3 
likely plays a role in the accumulation and 
activation of eosinophils and other inflammatory 
cells. Suppression of CCR3 results in reduced 
activity of chemokine binding and activation of 
inflammatory cells. 

CXCR1 and CXCR2 act as receptors for 
Interleukin-8 (IL-8), which is a potent chemotactic 
factor for neutrophils.17, 18 The binding of IL-8 to 
these receptors leads to neutrophil activation, 
which occurs through a G-protein that activates a 
phosphatidylinositol-calcium second messenger 
system.19 Since IL-8 involves high affinity 
binding, downregulation of CXCR1 and CXCR2 
reduces the activity of IL-8 binding and neutrophil 
activation. In protein-protein analysis, these three 
chemokine receptor genes (CCR3, CXCR1, and 
CXCR2) interact well and possibly result in the 
downregulation of the chemokine response and 
neutrophil activation in DLBCL patients. 

The constraints of our study stem from a small 
sample size and restricted funding, preventing 
the analysis of larger sample sizes through 
sequencing. With the limited sample size, there 
is a potential for certain genes to be excluded 
due to constraints in statistical significance.

Conclusion

The findings of this study demonstrate the 
identification of 73 DEGs between DLBCL 
patients and control samples. The downregulation 
of antimicrobial humoral response, neutrophil 
degranulation and activation, chemokines 
response, and defensins pathways in DLBCL 

patients, suggest that these pathways may 
contribute to cancer progression and poor 
immune response in affected individuals. These 
may serve as potential targets for DLBCL 
treatment and contribute to understanding target 
genes and pathways involved in DLBCL. 
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