
The Insulin-Producing Cells Generated from 
Rat Adipose Tissue Mesenchymal Stem Cells 
via Pdx1 Overexpression Activate an Immune 
Response both in Vitro and in Vivo 

Abstract
Background: The current work investigated the immunological 
features of insulin-producing cells (IPCs) generated from rat 
adipose-derived mesenchymal stem cells (ADSCs) both in vitro 
and in vivo. 
Methods: The research was carried out at Ahvaz Jundishapur 
University of Medical Sciences in 2023. ADSCs were derived 
from rat adipose tissues and differentiated into IPCs. The 
control group included undifferentiated ADSCs. The amount 
of secreted insulin was measured using ELISA. The expression 
of major histocompatibility complex-I (MHC-I) and MHC-II, 
cluster of differentiation 40 (CD40), and CD80 by IPCs in vitro 
was assessed using Western Blot analysis. The in vivo study 
was performed on 10 male diabetic rats. The experimental 
group received 107 IPCs in the peritoneal cavity. The control 
group received 107 undifferentiated ADSCs. After 4 hours, the 
expression of CD3a and CD45 by immune cells collected from 
the peritoneal cavity was measured using flow cytometry. All 
parameters were statistically analyzed using a t test.
Results: The differentiated cells secreted much higher amounts 
of insulin than the control group (P=0.04). IPCs exhibited higher 
expression of MHC-I and MHC-II, CD40, and CD80 (P=0.02, 
P=0.008, P=0.07, and P=0.02, respectively). The experimental 
group showed higher levels of CD3a and CD45 expression than 
the control group (P=0.07, P=0.04, respectively). 
Conclusion: Functional IPCs generated by ADSCs differentiation 
exhibited immunogenic activity both in vitro and in vivo. 
Immune-modulating strategies are required for the effective 
transplantation of the differentiated IPCs generated in our study.
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What’s Known

• Some researchers claim that the 
artificial insulin-producing cells are 
hypo-immunogenic and lack human 
leukocyte antigen ABC (HLA ABC), 
human leukocyte antigen-DR (HLA-
DR), cluster of differentiation 40 (CD40), 
and cluster of differentiation 80 (CD80) 
expression. However, some other studies 
show that artificial insulin-producing cell 
transplantation to diabetic rats results 
in the accumulation of immune cells and 
immune-reactivity. 

What’s New

• Our study showed that insulin-
producing cells derived from adipose-
derived mesenchymal stem cells 
expressed elevated levels of cluster of 
differentiation 40 (CD40), CD80, major 
histocompatibility complex-I (MHC-I), and 
MHC-II in vitro. The insulin-producing 
cells induced elevated levels of cluster of 
differentiation 3a (CD3a) and CD45 after 
transplantation to diabetic rats. 
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Introduction

The immunological response to transplanted insulin-producing 
cells (IPCs) is a significant obstacle in diabetes 1 cell therapy.1 
Identification of the major histocompatibility complex (MHC) by 
the immune system induces inflammation, immune cell activation, 
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and immune-chemokine synthesis.1 The immune 
reaction eliminates foreign IPCs and leads 
to failure in transplantation procedures.2 Low 
expression of MHC-II by mesenchymal stem cells 
(MSCs) inhibits antigen delivery to T cells and 
immunological rejection.3 MSCs do not express 
co-stimulatory molecules including CD80, CD86, 
and CD40.4 Some evidence demonstrates 
indoleamine 2,3-dioxygenase (IDO), prostaglandin 
E2 (PGE2), and transforming growth factor beta 
(TGF-β) production by MSCs.5 The cooperation 
between MSCs prevents natural killer (NK) cells, 
dendritic cells, T cells, and B cells activation.6 
Furthermore, MSCs release interleukin-10 (IL-10)  
and IL-4 to promote the development of regulatory 
T cells (Tregs).7 MSCs suppress the production 
of interferon- γ (IFN-γ) and tumor necrosis factor 
(TNF-α).8 Thus, under normal circumstances, 
MSCs are generally considered to be non-
immunogenic and safe sources for cell-based 
therapy.9 However, under specific experimental 
conditions, MSCs have been known to exhibit 
tumorigenic characteristics.10 Various factors 
such as the cell source, donor features, culture 
conditions, genetic alterations, microenvironment, 
and animal models, can impact the tumorigenic 
potential of MSCs.11 Currently, transplanting 
of IPCs produced from MSC differentiation is 
recommended.12 Differentiated IPCs are less 
likely to develop into tumors because they lack 
telomerase activity and pluripotency.13 However, 
before utilizing IPCs in clinical settings, a few 
significant questions need to be answered. One 
crucial component of a successful transplant is 
figuring out the immunomodulatory properties of 
the IPCs.14 Successful transplantation depends 
on comprehensive information about the 
interaction between the transplanted cells and 
the diabetic animal’s microenvironment. We need 
to know how long the IPCs that were transplanted 
to diabetic animals continue to secrete insulin. 
Do the transplanted IPCs develop the ability to 
cause immunogenicity? The published studies in 
this field are debatable.14 Several factors, such as 
the recipient’s microenvironment, the transplant 
site, the recipient’s cell source, the differentiation 
procedure, and the severity of diabetes, affect 
the success rate of IPC transplantation.15 
Overall, autologous transplantation carries a 
lower probability of immunological rejection 
than allogeneic transplantation.16 One 
autologous option involves the transplantation 
of induced pluripotent stem cells (iPSCs)-
derived IPCs. The iPSCs are derived from the 
reprogramming of the somatic cells and lack 
immunogenicity.17 The risk of immunological 
rejection may be decreased by executing the 
transplant in suitable organs, such as the liver 

or the anterior chamber of the eye.18 Another 
option to prevent immunological rejection is 
to match MHC antigens.19 Some researchers 
administered immunosuppressive drugs such 
as corticosteroids, calcineurin inhibitors, and 
mTOR inhibitors to reduce the likelihood of 
transplant rejection.20 Encapsulation using 
biocompatible semi-permeable microcapsules is 
another method for shielding foreign IPCs from 
immunological rejection.21 However, several 
studies claim that IPCs are not immunogenic 
at all.22 Pancreatic and duodenal homeobox 
1 (Pdx1) is a transcription factor that plays a 
crucial role in the development and function of 
the pancreas. It is specifically important for the 
differentiation of pancreatic beta cells, which 
are responsible for producing and secreting 
insulin. Our previous investigation in Ahvaz 
Jundishapur University of Medical Sciences 
showed that the IPCs derived from Adipose-
derived mesenchymal stem cells (ADSCs) 
differentiation with Pdx1 overexpression, were 
efficient in glucose sensing and insulin secretion 
both in vitro and in vivo.23 This study deals with 
evaluating the in vitro and in vivo immunogenicity 
of the differentiated cells to determine these 
cell’s capability for probable clinical use. 

Materials and Methods

An experimental study was conducted at Cellular 
and Molecular Research Center, Medical Basic 
Sciences Research Institute, Ahvaz Jundishapur 
University of Medical Sciences, Ahvaz, Iran, 
from January to July 2023.

Isolation of Rat Tissues
Five normal male Sprague-Dawley rats 

were chosen for tissue isolation. The protocol 
of pancreatic and splanchnic adipose tissue 
isolation was elucidated previously.23, 24 All the 
animals were treated by the “Guide for the Care 
and Use of Laboratory Animals” by the National 
Academy of Sciences (National Institutes of 
Health Publication). The ethical code was 
IR.BPUMS.REC.1402.243 from Persian Gulf 
University, Bushehr, Iran.

Construction of Pdx1 pIRES-hrGFP-1a
RNA extraction and cDNA synthesis were 

conducted as in our previous study.24 Pdx1 mRNA 
sequence was obtained from the NCBI gene bank 
(NM_022852.1 (1406 bp)). The primers were 
designed using Primer3 software version 4.1.1 
(Adobe Systems, USA). The primers included 
recognition sites for the EcoRI and BamHI 
enzymes in alignment with the pIRES-hrGFP-1a 
vector map (Bioneer Corporation, South Korea).  
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The specific primers (Bioneer Corporation, 
South Korea) were used for amplifying the full-
length Pdx1. The Pdx1 primer sequences are 
listed in table 1. The polymerase chain reaction 
PCR reaction was performed according to 
our previous study.24 The Pdx1 PCR product 
was purified from an agarose gel using the 
Gel DNA Recovery Kit (GF-1 Plasmid DNA 
Extraction Kit (Vivantis, Malaysia) according 
to the manufacturer’s instructions. The purified 
Pdx1 PCR product and the pIRES-hrGFP-1a 
vector (ThermoFisher Scientific, USA) were 
subjected to double digestion using BamHI and 
EcoRI (NEB, UK) restriction enzymes at 37 
°C for 2 hours. The digested fragments were 
electrophoresed on a 0.7% agarose gel stained 
with Safe stain (SinaClon BioSciences, Iran) 
and then purified using the DNA Recovery Kit 
(Vivantis, Malaysia) following the manufacturer’s 
instructions. The purified linear vector and insert 
underwent a ligation reaction using T4 DNA 
ligase (Bioneer, Korea). Two µL of the ligation 
product was transformed into calcium chloride-
competent Escherichia coli Top 10F’ cells 
(Clontech Laboratories, Japan). The transformed 
cells were selected on lysogeny broth (LB) 
medium agar (Sigma, USA) plates containing 
(100 μg/mL) ampicillin (Sigma, USA). Several 
colonies were screened by colony PCR using the 
universal primers T7 and BGH (Bioneer, Korea). 
The plasmid was purified using the AccuPrep 
Nano-Plus Plasmid Mini Extraction Kit (Bioneer, 
South Korea) and subjected to sequencing using 
the BigDye Terminator v3.1 Cycle Sequencing 
Kit (USA) in an ABI 3130 Genetic Analyzer 
(Applied Biosystems, USA).

Determination of Functionality of Pdx1-pIRES-
hrGFP-1a Vector

The L929 cell line (NCTC 929) was 
purchased from Gene Iran and cultured in 
Dulbecco’s Modified Eagle Medium-High glucose 
(DMEM-HG) (Sigma, USA) contained 10% Fetal 
Bovine Serum (FBS) (Sigma, USA) and 1% 
Penicillin/Streptomycin (Pen/Strep) (Sigma, USA). 
A total of 106 L929 cells were transfected with 20 
μg of the purified Pdx1-pIRES recombinant vector 
using an electroporator (Bio-Rad, USA). The cells 
received one pulse of 140 V for 15 msec. L929 
cells transfected with pIRES-hrGFP-1a served 
as the control group. The transfected cells were 
transferred to cell culture flasks containing 5 mL 
of DMEM-HG and 10% of FBS. The transfected 

cells were selected using 1.5 mg/mL of ampicillin 
and incubated at 37 °C for 2 weeks. The cell pellet 
was utilized for Real-Time PCR analysis.

Isolation, Characterization, Culture, and 
Differentiation of ADSCs

The procedures for the isolation, 
characterization, culture, and differentiation of 
ADSCs are detailed in our earlier research.24 On 
the 10th day of the differentiation process, the 
cells were subjected to transfection using the 
Pdx1-pIRES-hrGFP-1a recombinant vector.

Experimental Design
ADSCs were divided into two groups: Group 

1 was named the control group and kept in 
DMEM-HG containing 10% FBS for 14 days; 
Group 2 was assigned as the differentiated 
group and received DMEM-F12 (Sigma, USA) 
containing 2% FBS and 1% insulin transferrin 
selenium (ITS) (Sigma, USA) for 7 days, followed 
by another 7 days of culture in DMEM-LG 
(Sigma, USA) containing 10% FBS, 1% ITS, 
and 1% Nicotinamide (Sigma, USA). The cells in 
group 2 were transfected using the recombinant 
Pdx1-pIRES-hrGFP-1a vector.

The animal study group consisted of 10 
normal male Sprague Dawley rats at 8 weeks of 
age and 180-200 g weight. Rats were kept in a 
12:12-hour light-dark cycle with complete access 
to food and water. The experimental diabetes 
mellitus condition was induced using 50 mg/Kg 
of streptozotocin (STZ) (Sigma, USA) in citrate 
buffer (Sigma, USA).24 The rats with three blood 
glucose levels above 500 mg/ml were chosen as 
diabetic rats. The diabetic rats were studied in 
two groups. Group 1 (n=5) was injected in the tail 
vein with undifferentiated ADSCs, and Group 2 
(n=5) received differentiated IPCs in the tail vein.

Enzyme-linked Immunoassay 
The insulin concentration in the supernatant 

of the differentiated cells was measured 
using the rat-insulin ELISA kit (Monobind 
Inc., USA) according to the manufacturer’s 
recommendation. The protocol for insulin 
secretion assay was defined previously.24 

Real-Time PCR
Pdx1 gene expression was assessed using the 

qRT-PCR method. The SYBR® Green Real-Time 
PCR Master Kit (ParsTous, Iran) was employed 
for qRT-PCR analysis on the Step One Plus 

Table 1: Primer sequences used for PCR
Genes Primers Sequence
Pdx1 F CATGGGATCCATGAATAGTGAGGAGCAGTA
Pdx1 R ATGAATTCTCACCGGGGTTCCTGCGGTCGC
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TM Real-Time PCR Detection System (Applied 
Biosystems, USA). The primers were designed 
using Primer 3 software version 4.1.1 (Adobe, 
Systems, USA) (table 2). Relative quantification 
was performed using the comparative 2-∆∆Ct 
method. To validate the assay and ensure that the 
target gene and housekeeping gene primers had 
similar amplification efficiencies, the procedure 
was conducted as previously described.24 
Glyceraldehyde-3-Phosphate Dehydrogenase 
GAPDH was used as the housekeeping gene.

Western Blotting 
The protocol was performed as in our 

previous study.24 The antibodies included 
those against CD40 (ABIN6260623), CD80 
(ABIN678683), MHC-I (ABIN6263246), and 
MHC-II (sc-59322, Santa Cruz Biotechnology 
Inc., USA). Membranes were incubated with a 
suitable mouse anti-rabbit IgG-HRP (sc-2357) 
(Santa Cruz, USA). The level of protein activity 
was determined using an ECL detection kit. 
Protein loading (sc-365062, Santa Cruz, USA) 
was adjusted for GAPDH immunoreactivity. 
Optical density analysis was carried out utilizing 
the CLIQS 1D program from Total Lab in the UK.

Lavage Protocol
In this step, 107 differentiated cells were 

injected into the peritoneal cavity of diabetic 
rats. After 4 hours, the peritoneal cavity was 
washed with 8 mL of PBS to assess the extent 
of immune system stimulation and immune cell 
accumulation. The samples were centrifuged 
at 1000 g for 5 min. Then the samples were 
incubated with erythrocyte lysing buffer (Sigma, 
USA) for 10 min at room temperature. The 
peritoneal fluid was combined with lysis buffer at 
a ratio of 40 to 60. After centrifuging for 10 min 
at 1500 rpm, the supernatant was discarded. 
The samples were incubated for 5 min at room 
temperature. Then, the residual sediment was 
centrifuged once more with 1 mL of red blood 
cell (RBC) lysis solution. The remaining debris 
was washed using PBS (Sigma, USA). Following 
cell collection, the cells were stained with anti-
rat CD3a and anti-rat CD45 and subjected to 
flow cytometric analysis.

Fluorescence-Based Assay 
The cells were washed three times using 

PBS. The specific antibodies against cell surface 
clusters of differentiation (CDs; CD45 (30-F11): 
sc-53665) and CD3a ((PC3/188A): sc-20047); 
(Santa Cruz, USA) were dissolved in a solution of 
3% BSA/PBS (Sigma, USA). The cells received 
a total of 1 μg of the antibody solution. The 
samples were incubated for 30 min in the dark 
at room temperature. The cells were washed 
three times with PBS and resuspended in 1 mL 
of ice-cold PBS containing 10% FBS and 1% 
sodium azide (Sigma, USA). The fluorescence 
activity of the samples was measured using a 
Galaxy flow cytometer (Dako, USA). The results 
were analyzed using the Flow Jo 8.8.7 software 
(Treestar, USA). Two negative controls, including 
an isotype control and a stainless control, were 
provided for each sample.

Statistical Analysis
The statistical analysis was performed 

using GraphPad Prism 8 software (GraphPad 
Software, USA). All data were reported in the form 
of mean±SD. All parameters were statistically 
analyzed using a t test. The statistically significant 
difference between distinct experimental groups 
was indicated as follows: *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. 

Results

Changes in ADSC’s Morphology following 
Differentiation into IPCs

The ADSCs exhibited an adherent spindle-
like appearance in the third passage (figure 1A).  
The differentiated ADSCs showed a round, 
epithelial-like shape (figure 1B).

Validation of Transforming Process
The occurrence of the transformation process 

was confirmed using direct colony PCR. As 
shown in lane 2 in figure 2, a 1546-bp band was 
seen on 0.7% electrophoresis gel corresponding 
to the 1406-bp Pdx1 gene and 140-bp flanking 
regions of the Pdx1-pIRES-hrGFP-1a vector. 
This finding confirms the accuracy of the 
recombinant plasmid transformation in the Top10 
F’ bacteria. The sequencing of the recombinant 
plasmids was also performed with T7 and BGH 
universal primers to confirm the accuracy of the 
Pdx1 sequence after amplification and cloning 
(lane 3, figure 2). The sequence obtained was 

Table 2: Primer sequences used for quantitative real-time RT-PCR
Genes Primers Sequence
Pdx1 F GGAGGGTTTGGAAAACCAGT
Pdx1 R ACAAACATAACCCGAGCACA
GAPDH F AGTTCAACGGCACAGTCAAG
GAPDH R TACTCAGCACCAGCATCACC
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translated using the ExPASy Translate tool 
(https://web.expasy.org) and then analyzed 
using the online tool nBLAST )https://blast.ncbi.
nlm.nih.gov/Blast.cgi ). Based on this finding, 
the cloned Pdx1 gene sequence had a 100% 
homology to the Pdx1 sequences submitted 
to GenBank (GenBank accession number: 
NM_022852.1).

Evaluation of Fluorescence Appearance
The L929 cells that had been transfected with 

the Pdx1- pIRES-hrGFP-1a recombinant vector 
showed a fluorescence appearance under an 
inverted microscope (figure 3A). 
Evaluation of the transfected cells’ Pdx1 
Expression Potential

According to the Real-time PCR data, Pdx1 
expression was much higher in transfected cells 
than in cells that had not been transfected with 
recombinant vectors (P<0.0001) (figure 3B).

Figure 1: The morphological characteristics of ADSCs (adipose-derived mesenchymal stem cells) during differentiation into 
IPCs. (A) ADSCs exhibited a fibroblast-like appearance. (B) The fibroblast-like appearance of ADSCs changed to an epithelial-
like shape following differentiation to IPCs. Phase contrast magnification, ×100.

Figure 2: Validation of the transforming process by the 
characterization of the Pdx1-pIRES-hrGFP-1a vector. Lane 
1 shows a 1 KB ladder. Lane 2 shows a 1406 bp Pdx1 gene 
separated from the recombinant Pdx1-pIRES-hrGFP-1a 
vector that was digested using EcoRI and BamHI enzymes. 
Lane 3 shows a 1546 bp PCR product of recombinant Pdx1-
pIRES-hrGFP-1a vector.

Figure 3: Validation of the transfection process by two processes: (A) Validation of the fluorescence appearance. The L929 
cells transfected with Pdx1-pIRES-hrGFP-1a vector showed fluorescence appearance 24 hours following transfection under an 
inverted fluorescence microscope. Phase contrast magnification, ×100. (B) Validation of the potential of transfected cells to Pdx1 
expression. The L929 cells transfected with Pdx1-pIRES-hrGFP-1a vector showed significantly elevated levels of Pdx1 when 
compared with the control group (P<0001). GAPDH was used as the calibrator for real-time PCR analysis. Data are expressed 
as mean±SD. ***Represents a statistically significant difference between different groups at P<0001. All experiments were 
carried out in triplicate.
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Analyzing the Functionality of Differentiated 
IPCs

The ADSCs-derived IPCs demonstrated the 
ability to secrete insulin in response to glucose 
treatment. The undifferentiated ADSCs were 
not able to secrete insulin. Group 2 secreted 
significantly greater amounts of insulin compared 
to group 1 (P=0.04) (figure 4).

In Vitro Immunogenicity of Differentiated IPCs 
Evaluation of in vitro immunogenicity 

properties of the IPCs showed that the cells were 
able to express MHC-I and MHC-II. Comparison 
between MHC expression between IPCs and 
undifferentiated ADSCs showed a significant 
increase in MHC-I and MHC-II in differentiated 
IPCs compared to the control (P=0.02 and 
P=0.008, respectively) (figure 5). Moreover, the 
differentiated cells showed increased levels of 
CD40 and CD80 in comparison with the control 
group (P=0.07 and P=0.02, respectively). The 
increase in CD80 expression was statistically 
significant (figure 6). 

In Vivo Immunogenicity of Differentiated IPCs 
Transplantation of the IPCs to the peritoneal 

cavity of the diabetic rats induced accumulation 
of immune cells. Flow cytometry analysis 
showed an increase in CD3a (P=0.07) (figure 7) 
and a significant increase in CD45 expression 
in the peritoneal cavity of the diabetic rats who 
received IPCs compared to the control rats 
(P=0.02) (figure 8).

Discussion

Our ongoing research reveals that MSCs 
obtained from rat adipose tissue can effectively 
differentiate into IPCs. In our study, these 
differentiated cells exhibited the ability to produce 
and release insulin, and their ability to insulin 
secretion was notably higher than the control 
group. The differentiated cells showed increased 
levels of CD40, CD80, MHC-I, and MHC-II 
in vitro. The transplantation of differentiated 

Figure 4: Analysis of the effectiveness of differentiated 
IPCs. The IPCs secreted significantly elevated levels of 
insulin in response to high concentrations of glucose (25 
mg/mL) compared to the undifferentiated ADSCs (P=0.04). 
Data are expressed as mean±SD. *Represents statistical 
significance between different groups at P<0.05. All 
experiments were carried out in triplicate.

Figure 5: The in vitro immunogenicity of differentiated IPCs evaluated by analyzing MHC-I and MHC-II expression. The 
IPCs obtained from ADSCs differentiation expressed significantly elevated levels of MHC-I and MHC-II compared with the 
un-differentiated ADSCs (P=0.02 and P=0.008, respectively). GAPDH was used as the calibrator for Western Blot analysis. 
Data are expressed as mean±SD. *Represent a statistically significant difference between different groups at P<0.05. All 
experiments were carried out in triplicate.
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cells into diabetic rats resulted in an increase 
in CD3a and CD45 expression as well as an 
accumulation of immune cells in the peritoneal 
cavity. Balboa and coworkers demonstrated that 
in laboratory settings, highly potent human stem 
cells can be directly converted into beta cells.25 
Tsai and colleagues reported that transplanting 

differentiated IPCs derived from human umbilical 
cord mesenchymal stem cells (hUCMSCs) 
can reduce hyperglycemia in NOD mice.26 
Ebrahimi and their collaborators utilized skin-
derived stem cells to produce beta-like IPCs.27 
These findings present exciting possibilities for 

Figure 6: The in vitro immunogenicity of differentiated IPCs was evaluated by analyzing CD40 and CD80 expression. The 
IPCs obtained from ADSCs differentiation expressed elevated levels of CD40 and CD80 compared with the un-differentiated 
ADSCs (P=0.07 and P=0.02, respectively). GAPDH was used as the calibrator for Western Blot analysis. Data are expressed as 
mean±SD. * and **Represent statistically significant difference between different groups at P<0.05 and P<0.01. All experiments 
were carried out in triplicate.

Figure 7: The in vivo immunogenicity of differentiated IPCs, 
evaluated by analyzing CD3a expression. Transplantation 
of obtained IPCs into the peritoneal cavity of diabetic 
rats induced propagation of the blood immune cells that 
expressed higher amounts of CD3a than control diabetic 
rats. However, the difference was not significant (P=0.07). 
Data are expressed as mean±SD. All experiments were 
carried out in triplicate.

Figure 8: The in vivo immunogenicity of differentiated IPCs, 
evaluated by analyzing CD45 expression. Transplantation 
of obtained IPCs into the peritoneal cavity of diabetic 
rats induced propagation of the blood immune cells that 
expressed significantly higher amounts of CD45 than 
control diabetic rats (P=0.02). *Represents a statistically 
significant difference between different groups at P<0.05. 
Data are expressed as mean±SD. All experiments were 
carried out in triplicate.
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the treatment of diabetes in the future.28 Wu 
and colleagues found that co-transplanting 
of bone marrow-derived MSCs (BMSCs) with 
Langerhans islets resulted in improved blood 
sugar control compared to mice that received 
islet transplantation alone. There was also  
T cells generation. The researchers concluded 
that successful transplantation is due to reduced 
inflammation and immune response by Tregs.29 
Ribeiro and colleagues demonstrated that 
ADSCs have a more potent inhibitory effect 
on T cell proliferation and immune response 
regulation than BMSCs.30 Zhao and colleagues 
indicated that hUCMSCs differentiated into 
hepatocyte-like cells do not express MHC-II 
molecules and possess immunomodulatory 
properties. In a study conducted by Liu and 
colleagues, BMSCs from rabbits did not express 
MHC-II molecules after undergoing osteogenic 
differentiation in laboratory conditions. These 
cells were unable to induce the proliferation 
of allogeneic peripheral blood mononuclear 
cells (PBMCs) or activate cytotoxic T cells. 
However, the cells showed an obvious increase 
in the secretion of IL-10 as an anti-inflammatory 
cytokine.31 These findings suggest that the 
IPCs derived from MSC differentiation, despite 
their higher ability to MHC-I expression, cannot 
activate cytotoxic T cells or memory T cells. 

In contrast, some evidence claims an 
irreversible immune response acquirement 
following the differentiation of MSCs to IPCs. 
Mohammadi and colleagues conducted a 
laboratory study that showed BMSCs acquire 
immunogenicity properties after differentiation 
into IPCs.32 The results of our study revealed 
that ADSCs exhibited immunogenicity traits 
following their differentiation into IPCs. The 
differentiated cells exhibited higher expression 
of CD40 and CD80 markers than the control 
group. Additionally, the differentiation process 
toward insulin production significantly elevated 
the levels of MHC-I and MHC-II compared 
to the control group. These findings suggest 
that differentiation of ADSCs enhances their 
immunogenic properties in vitro. In this regard, 
the impact of the in vitro microenvironment on 
immunogenicity must be noted. The induction 
of immunological properties in the extracellular 
environment can be attributed to cytokine 
and protein interactions in the differentiation 
culture and their effect on the production of 
antigens that stimulate the immune system. FBS 
presents MHC-I. Hence, FBS application may 
lead to increased immunological responses.33 
The results of Rowland and colleagues’ study 
indicated that autologous MSCs injection along 
with FBS resulted in post-injection inflammation 

and cellular toxicity.33 
The present study found that the injection 

of differentiated cells into diabetic rats caused 
immunogenic reactions in the host body. When 
differentiated cells were injected into diabetic 
rats, there was an increase in CD3a and CD45 
factors in the accumulated cells in the peritoneal 
cavity compared to the control group. Hassanin 
and others showed that transplantation of 
differentiated IPCs from human Wharton’s 
jelly into diabetic mice triggered an immune 
response. They recommended assessing the 
immunogenicity of the disease microenvironment 
before conducting IPC transplantation into the 
recipient’s body.34 Yang and colleagues reported 
that IPCs derived from the human umbilical cord 
in laboratory conditions are hypo-immunogenic, 
but the allogeneic transplantation of these 
cells to healthy immune system mice leads 
to an immune response. The induced IPCs 
expressed low levels of HLAABC. However, 
they devoided HLA-DR, CD40, and CD80 
expression. Induced IPCs did not induce allo-
antigenic Human Peripheral Blood Mononuclear 
Cells (h-PBMC) proliferation after co-culturing 
with hPBMC cells. The researchers observed an 
increase in T lymphocytes and monocytes in the 
peritoneal cavity of diabetic rats after injecting 
IPCs.35 The interpretation was that the diabetes 
microenvironment induces positive expression 
of MHC-I expression in transplanted IPCs. 
This finding can be explained by the diabetes 
microenvironment.35 Tang and colleagues 
discovered that allogeneic BMSCs continue to 
differentiate into IPCs after transplantation into 
the subcapsular region of the pancreas in diabetic 
mice. However, along with the differentiation 
process, MHC-II expression on MSCs became 
positive, and alloantibodies were detected in the 
serum.36 The site of transplantation is another 
important factor in regulating the immune 
response. For instance, the immune system 
is prioritized in the eye and the brain, where it 
responds differently than it does elsewhere in 
the body.36

Some other studies, however, demonstrate 
immune-suppressive behaviors of MSCs-
originated IPCs. Ghoneim and colleagues 
reported no expression of HLA-AB and 
HLA-DR after IPC injection in mice.37 In one 
laboratory study, the differentiation of BMSCs 
into muscle cells led to an increase in MHC-I 
and MHC-II expression and stimulated the 
production of immune cells. However, the 
effects of these cells on the survival and repair 
of damaged myocardium in allogeneic mice 
were much weaker than those of autologous 
cell transplantation. The researchers concluded 
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that the induction of muscle cells in laboratory 
conditions reduces immune-modulating 
molecule secretion and results in a decrease 
in the survival of differentiated cells in the host 
body.38

Changes in the microenvironment during 
specific diseases can enhance the differentiation 
of MSCs and alter their immune properties 
inside the body.38 Diabetes causes oxidative 
stress that can be considered as an important 
trigger of immunogenicity. It has been found 
that accumulation of IFN-γ induces MHC-I and 
MHC-II expression by MSCs both in vitro and 
in vivo.39 Therefore, the relationship between 
the disease microenvironment and changes in 
immune properties should be investigated to 
clarify the basic mechanism of immunological 
changes after IPC differentiation.38, 39

Boyd and others investigated the primary 
immune response against IPCs derived from 
embryonic stem cell differentiation in mice. The 
results of this study showed that transplantation 
of IPCs results in immediate accumulation 
of neutrophil or macrophage cells as well as 
a significant increase in the concentration of 
inflammatory cytokines at the transplant site. 
The researchers proposed potential techniques 
to prevent cell damage and assure their long-
term survival and functionality in vivo.40 As a 
result, a long-term study of the immunogenicity 
of transplanted IPCs is recommended. 

Overall, transplantation of artificial IPCs, with 
continuous insulin secretion and proliferation 
ability, is thought to be a permanent cure for 
type 1 diabetes. However, the immunogenicity 
of IPCs generated from MSCs is controversial. 
The immunogenicity of IPCs varies depending 
on the original cell line, differentiation technique, 
in vitro micro-environment, transplantation 
site, host animal micro-environment, and 
the time after transplantation. Therefore, to 
avoid immunologic rejection and achieve a 
renewable and efficient population of IPCs, the 
immunogenicity properties of the cells should be 
investigated before transplantation. However, we 
are currently dealing with the issue of developing 
the immunogenic properties of insulin-producing 
cells over time following transplant. 

Conclusion 

Our research demonstrated that the functional 
IPCs produced by ADSC differentiation 
employing ITS and nicotinamide plus Pdx1 
transfection exhibited immunogen activity both in 
vitro and in vivo. As a result, immune-modulating 
strategies must be used during the allogenic 
transplantation of IPCs. It is recommended to 

explore the encapsulation method of the artificial 
IPCs to limit their immunogenic effect.
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