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. Serine/threonine kinases, including
NEK2 (NimA-Related Protein Kinase 2),
MELK (Maternal Embryonic Leucine Zipper
Kinase), PLK1 (Polo Like Kinase 1), AURKB
(AuroraKinase B), and CHEK1 (Checkpoint
Kinase 1), are linked to breast cancer
progression.

. These kinases play a critical role in
regulating the cell cycle and are associated
with poor overall survival in breast cancer
patients.

. This study identifies a cluster of five
serine/threonine kinases as hub genes
in breast cancer through integrated
transcriptomic analysis.

. The structural similarities in their
binding sites suggest potential for targeted
therapies aimed at these conserved
domains in breast cancer treatment

Background: Breast cancer (BC) is the most common cancer
affecting women worldwide. There is a strong need to identify
molecular pathways that might represent effective therapeutic targets.
Methods: We conducted a large-scale transcriptomic analysis
using publicly available datasets from the NCBI GEO and
TCGA databases. Microarray datasets (GSE161533, GSE162228,
GSE70947, and GSE139038) and RNA-Seq data were analyzed
to identify differentially expressed genes (DEGs) using cut-off
criteria of adjusted P<0.05 and [log2FC|>1. Gene co-expression
networks were constructed using Weighted Gene co-expression
Network Analysis (WGCNA) in R (version 1.68), followed by hub
gene identification with STRING and MCODE tools. Functional
enrichment was further explored through Gene Ontology analysis.
Results: Two regulatory modules enriched in cancer datasets
were identified from both microarray and RNA-Seq analyses,
corresponding to a network of 85 genes, compared to a distinct
network of 474 genes enriched in control tissue samples. Further
analyses to identify densely connected gene clusters within these
networks revealed a cluster “containing 29 cancer-related genes that
included five hub gene candidates encoding serine/threonine kinase
family proteins: NimA-Related Protein Kinase 2 (VEK2), Maternal
Embryonic Leucine Zipper Kinase (MELK), Polo Like Kinase 1
(PLKI), Aurora Kinase B (AURKB), and Checkpoint Kinase 1
(CHEKI). Members of this family counter the expression of the
tumor suppressor and cell cycle regulator Tumor Protein P53 (7P53),
which is more highly expressed in healthy people. Moreover, all hub
genes with higher transcript levels were associated with considerably
poorer overall survival rates in BC patients. These results imply
that these hub genes are relevant in terms of pathophysiology for
the treatment of BC and deserve further attention. Kaplan-Meier
survival analysis demonstrated that increased expression of all
five genes was significantly associated with decreased survival
(P<0.001). Hazard ratios (HRs) ranged from 1.41 to 1.77, indicating
a substantial negative impact on patient survival for each gene.
Conclusion: Survival analysis showed that tumors with higher
expression levels of hub genes were associated with significantly
shorter overall survival times among breast cancer patients. This
finding suggests that these hub genes are highly relevant to BC
pathophysiology and could be considered targets for monitoring.
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Introduction

Breast cancer (BC) poses a significant threat
worldwide.! A survey in 2020 revealed an
estimated 276,480 new cases of BC diagnosed
and approximately 42170 deaths related to
this disease in the United States alone.? Early
detection and intervention can significantly
hinder the disease progression to a metastatic
state in numerous BC patients. However, a
notable proportion, ranging from 20% to 30%,
ultimately progresses to metastatic disease,
which accounts for the majority of fatalities
associated with breast cancer.? ®* Various
factors, including tumor subtype, response
to initial treatment, and biological traits, are
crucial in the onset of metastasis. Particularly
aggressive subtypes, such as Receptor tyrosine-
protein kinase erbB-2 or Human Epidermal
Growth Factor Receptor 2 (HERZ2)-positive,
and triple-negative breast cancer, exhibit an
increased susceptibility to metastasizing.* °
For early detection, precise prognosis, and
developing specific treatments, it is essential to
understand the genetic foundation underlying
this malignancy.® It is widely recognized that
Breast cancer type 1 susceptibility protein 1
(BRCA1) and breast cancer type 2 susceptibility
protein (BRCA2) mutations increase the risk of
both breast and ovarian cancers.”® Mutations
in other genes such as Ataxia-Telangiectasia
Mutated (ATM), BRCA1 Associated RING
Domain 1 (BARDT), BRCA1 Interacting Protein
C-Terminal Helicase 1 (BRIP1), Caspase 8
(CASPS8), Cytotoxic T-Lymphocyte Associated
Protein 4 (CTLA4), Cytochrome P450 Family
19 Subfamily A Member 1 (CYP19A), Fibroblast
Growth Factor Receptor (FGRF), Lymphocyte
Specific Protein 1 (LSP), Mitogen-Activated
Protein Kinase Kinase Kinase ( MAP3K), Nibrin
(NBN), RADS51 Recombinase (RADS7), and
Telomerase Reverse Transcriptase (TERT)
can also lead to an increased probability
of developing BC.""® Most of these genes
function as tumor suppressors and have a lower
prevalence of mutations than BRCA genes and
are generally associated with a lower risk factor
for BC. The application of gene expression data
in survival analysis among patients with BC has
been explored in several studies."'®* The TP53
pathway, whose perturbation is a crucial factor
in the development of BC, plays an essential role
in maintaining genome stability. It does this by
coordinating cell cycle arrest and apoptosis in
response to DNA damage, thereby reducing the
risk of passing on damaged genetic material."”
There are intricate connections between
the proteins managing mitotic checkpoints and
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regulating cell cycle progression, and those
that contribute to genomic instability and tumor
formationwithinthe contextofthe TP53pathway.®
One intriguing aspect of this interplay is a tightly
regulated feedback loop involving TP53 and
serine/threonine kinases, including WEE1 G2
Checkpoint Kinase (WEET), Polo-Like Kinase 1
(PLKT), NIMA Related Kinase 2 (NEK2), BUB1
Mitotic Checkpoint Serine/Threonine Kinase
(BUBT), TTK Protein Kinase (TTK), AURKB,
and Aurora Kinase A (AURKA). The analysis
of publicly available gene expression profiles
has identified several kinases with potential
synthetic lethal interactions with TP53, including
PLK1, NEK2, BUB1, and AURKA. Therapeutic
targeting of the catalytic domain of serine/
threonine kinases is appealing because it offers
a druggable target and can limit unfavorable
effects on control cells. Disrupting essential
signaling cascades by targeting kinases may
also impede progression towards metastasis
while treating BC effectively.'

BC remains a global health problem, with
genetic factors such as germline BRCA1/2
variants playing a key role in susceptibility. These
mutations, which are widespread in different
populations, play a role not only in breast and
ovarian cancers but also in prostate cancer, as
reported by Cioffi and colleagues.?®° Reproductive
risk factors have a further influence on hereditary
BC, as systematically analyzed by Springer.?'
Advances in genetic modeling, such as the Breast
and Ovarian Analysis of Disease Incidence and
Carrier Estimation Algorithm (BOADICEA) model
validated by Mgller and colleagues, improve
forecasting pathogenic variants in cancer
susceptibility genes and developing reliable
tools for risk evaluation.?2 Complementing these
geneticinsights, bioinformatic analyses, including
Co-expression Network Analysis as applied
by Xie and colleagues, have revealed disease
mechanisms and important genetic factors.®
Molecular studies, such as that of Asparuhova
and colleagues, have disclosed the regulatory
role of Transforming Growth Factor Beta (TGF-
B7) and Insulin-Like Growth Factor 1 (IGF-1)
in cancer progression and bone regeneration
and identified potential therapeutic targets.?* 2°
These integrated genetic, bioinformatic, and
molecular approaches are crucial to unravel
the complex mechanisms of BC and develop
targeted therapies.

Innovative in silico techniques have facilitated
investigations into gene functionality, diseases,
and precision medicine at the molecular level.?
Through an integrative approach to identify sets
of genes associated with survival, Baculoviral IAP
Repeat Containing 5 (BIRCS), CyclinB1 (CCNB1),
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and MYB Proto-Oncogene Like 2 (MYBL2) were
found to have significant associations with BC
patients’ survival chances.” Here, we aimed to
conduct in-depth bioinformatic analyses of a
large collection of publicly available datasets to
identify hub genes and key pathways involved
in BC. Our approach included examining the
structural bioinformatics of these hub genes, with
the ultimate goal of assessing their prognostic
and therapeutic potential in BC.

Materials and Methods

Datasets

Following a keyword-driven search, we
retrieved four gene expression data series
from the NCBI GEO website (https://www.ncbi.
nim.nih.gov/). The datasets identified were
GSE161533, GSE162228, GSE70947, and
GSE139038. The GPL571 platform was utilized
for generating datasets of both GSE161533 and
GSE162228; whereas the dataset of GSE7094
was generated using the GPL13607 platform.
The GPL27630 platform was used to create a
microarray dataset for GSE139038. In total, the
four datasets comprised 464 samples, including
248 BC samples and 216 control samples.
Detailed information on the studies included in
this analysis is provided in table 1.

To identify differentially expressed genes
(DEGSs) between cancerous and non-cancerous
samples, the Bioconductor package was used.
Perl (version 5.0) available online at http://
www.perl.org/ was employed for background
correction as well as normalization purposes
afterwards. We retrieved an equivalent set of
RNA-Seq datasets by preserving the same
keyword search as above. Data was downloaded
from TCGA (The Cancer Genome Atlas) (https://

cancergenome.nih.gov/), and analyzed using
the limma package (an R add-on) using cut-
off criteria of adjusted P<0.05 and |log2FC|>1.
This dataset comprised 563 BC samples and
114 control samples in total, as obtained from
TCGA's BC dataset. For gene expression
calculations, the edgeR package was used,
following similar methods used to evaluate
integrated GEO datasets for consistency in data
analysis. Figure 1 depicts a flowchart outlining
the data analysis pipeline.

Weighted Gene Co-expression Network Analysis

The expression data profiles were used to
generate gene co-expression networks using the
Weighted Gene Co-expression Network Analysis
(WGCNA) package in R (version 1.68). A
weighted adjacency matrix was constructed using
the power function B, as previously described.3" %2
We selected an appropriate 3 value to enhance
matrix similarity and construct a co-expression
network. Hierarchical weighting matrix clustering
was used to define the modules. Intermediate
graft hierarchies were conducted based on
the calculation of Topological Overlap Matrix
(TOM) -based dissimilarity, with the lowest size
considered for the gene dendrogram. Genes with
similar expression indices were categorized within
identical gene units using the Dynamic Tree Cut
algorithm. The Enrichr online database (https://
maayanlab.cloud/Enrichr/) was used to analyze
the molecular and functional characteristics
and KEGG pathways of the DEGs. Statistical
significance was set at P<0.05. The STRING
database (https://string-db.org/) was applied to
obtain protein-proteininteraction (PPI) information
for the DEGs. Then, Cytoscape software (https:/
cytoscape.org) (version 3.9.1) was employed
to assemble a PPl association network.

Table 1: Detailed information on the studies included in this analysis.

GSE No. Study Number of Platform Organism
samples
GSE161533 Expression data from esophageal squamous 84 [HG-U133_Plus_2] Affymetrix ~ Homo

Human Genome U133 Plus 2.0
Array

[HG-U133_Plus_2] Affymetrix Homo

cell carcinoma patients?” sapiens

GSE162228 Concordance of PAM50 molecular subtyping 133

between oligonucleotide microarray and Human Genome U133 Plus 2.0  sapiens
NanoString nCounter assay for Taiwanese Array
BCZB

GSE70947  Age and estrogen-dependent inflammation 296 Agilent-028004 SurePrint G3 Homo

in breast adenocarcinoma and normal breast
tissue [cohort_2]%° (Feature Number version)

GSE139038 Gene expression profiling in paired normal, 65 Print_1437(Block_Column_Row Homo
apparently normal, and breast tumor tissues* IDs) sapiens

[HG-U133-Plus-2] Affymetrix Human Genome U133 Plus 2.0 Array: A widely used microarray platform for analyzing gene
expression profiles. It covers over 47,000 transcripts and variants, providing comprehensive coverage of the human genome;
Agilent-028004 SurePrint G3 Human GE 8x60K Microarray (version with function number): A high-resolution microarray
platform with 60,000 probes per array for detailed gene expression analysis with increased sensitivity and specificity in
transcript detection; Print_1437 (Block-Column-Row-IDs): A custom microarray platform organized by block, column, and row
identifiers to uniquely identify probes and enable precise measurement of gene expression.

Human GE 8x60K Microarray sapiens
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Analyses of the microarray datasets Analyses of the RNA-seq datasets
GEO database TCGA database

GSE161533 (28 Cancer & 28 Normal Samples) 15275 DEGs were identified

GSE162228 (25 Cancer & 22 Normal Samples) [log2FC|>1
GSE70947 (154 Cancer & 142 Normal Samples) DE i

WGCNA Gs matrix
GSE139038 (41 Cancer & 24 Normal Samples) (810 upregulated & 469
(p=8,R2=085) downregulated)
[log2FC| > 1
DEGs matrix WGCNA

20 modules were obtained

(420 upregulated & 24 B=3,R2=0.385)
downregulated genes) I

7 modules were obtained

Cancer

Control | Cancerl

Turquoise modules
(cor=0.63, p=1e—52)

Cancer

Selected common genes

Control Control

Selected common genes

Hub Genes of Hub Genes of
control group cancer group
STRING database STRING database
474 nodes 85 nodes
MCODE MCODE
|modu1e-one with the highest degree was createdl
The module consists of The module consists of
24 nodes and 273 edges 29 nodes and 382 edges
[ [

Gene Ontology Analysis Gene Ontology Analysis

Figure 1: This figure illustrates the comprehensive bioinformatics data analysis pipeline used here for analyzing gene expression|
data from both microarray and RNA-seq datasets, sourced from the GEO and TCGA databases. The process begins with the
retrieval and preprocessing of four datasets from the GEO database and RNA-seq data from TCGA, comprising a total of 464

samples (248 breast cancer samples and 216 control samples) for GEO and 677 samples (563 breast cancer samples and 114
control samples) for TCGA.
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The Molecular Complex Detection (MCODE)
plug-in in Cytoscape was employed to extract
core gene modules from the PPl network,
applying the following parameters: degree cut-
off=2, node score cut-off=0.2, K-core=2, and a
maximum depth of 100.

Statistical Analysis

The Kaplan-Meier Plotter online database
(http://www.kmplot.com) was employed to
perform the survival analyses of the selected
core genes. The hazard ratio (HR) with 95%
confidence intervals and log-rank P value were
determined and shown on the plot.

Structural Bioinformatics for Upregulated Serine/
Threonine Kinases

To acquire insights into the functionality of
the serine/threonine kinase protein family, we
employed a robust methodology that combines
both sequence and structural alignments.
Sequencing and structural alignments for these
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serine/threonine kinase proteins were conducted
using the YASARA (version 19.12.14) software
and the PRALINE service with the MUSTANG
algorithm.3% 34 Qur working hypothesis centers
on the idea that, when analyzed in the context
of protein structures, structural and sequence
alignments may provide mechanisms for
controlling the activity of this family of proteins.

Determination of DEGs in BC

Analysis of BC samples in comparison to
control samples of the four GEO microarray data
series (GSE161533, GSE162228, GSE70947,
and GSE139038) revealed upregulated and
downregulated genes for each of the selected
datasets (GSE161533: 476 upregulated, 399
downregulated; GSE162228: 183 upregulated,
109 downregulated; GSE70947: 285
upregulated, 292 downregulated; GSE139038:
1016 upregulated, 391 downregulated) (figure 2).
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Figure 2: Volcano plots a, b, ¢, and d are presented for the GSE70947, GSE162228, GSE161533, and GSE139038 datasets. In|
general, this figure depicts the DEGs between control and BC samples across four distinct datasets (GSE70947, GSE162228,
GSE161533, and GSE139038). Each plot features the log2 fold change (log2FC) on the horizontal axis and the -log10 P value
on the vertical axis. Genes that are significantly upregulated are marked in red (log2FC>1, P<0.05), while downregulated

genes are indicated in blue (log2FC<-1, P<0.05), and non-significant genes are shown in gray. The plots distinctly separate
significantly DEGs from those that are not significant, underscoring the influence of BC on gene expression. The variations in
log2FC and -log10 P values across the datasets reflect differences in the extent and significance of gene expression alterations.
These visual representations are essential for pinpointing critical genes associated with cancer biology, which may act as
potential biomarkers or therapeutic targets for future research.
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In other words, figure 2 shows volcano
plots of differentially expressed genes (DEGs)
from four datasets (GSE70947, GSE162228,
GSE161533, GSE139038) comparing BC (BC)
and control samples (P<0.05, [log2FC|>1). The
x-axis represents the log2 fold changes (extent
of gene expression), and the y-axis shows the
-log10 P values (statistical significance). Red
and blue dots indicate significantly upregulated
and downregulated genes in BC, respectively,
while gray dots represent non-significant genes.
The graphs highlight important DEGs in different
datasets and show potential biomarkers and
therapeutic targets for BC.

The analysis of the four integrated datasets
together identified a total of 1083 shared genes,
with 444 DEGs, comprising 420 upregulated
and 24 downregulated genes in BC samples
compared to control samples (|log2FC|>1).
There were 15275 genes found in the RNA-
Seq dataset (brca-tcga-pan-can-atlas-2018)
from the TCGA database. The analysis of this
dataset identified 1279 DEGs in total, including
810 upregulated and 469 downregulated genes
in BC samples compared to control samples
(log2FC|>1). Principal components analysis
(PCA) of the datasets revealed that they were
of sufficient quality for further bioinformatics
processing. The PCA of expressed genes
showed clustering of the expression profiles
of control compared to BC samples, as well as
adequate quality evaluation markers for future

data processing (figure 3). Figure 3 shows
plots of PCA for (a) the integrated microarray
dataset and (b) the TCGA dataset, showing a
clear separation between control (con) and
cancer (col) groups. Each point represents a
sample, with the first principal component 1
(PC1) and the second principal component 2
(PC2) showing the highest variance. The clear
clustering of the groups emphasizes the different
expression profiles between cancer and control
samples and confirms the quality of the dataset
and the consistency of the grouping. Weighted
correlation network analysis found that similar
genes from two datasets were consistently
expressed in BC samples, in contrast to the
control samples.

WGCNA Microarray Datasets

We analyzed 2335 genes with comparable
expression levels using the WGCNA R program.
To determine if the network was scale-free, we
set the power of =3 (scale-free R?=8.5) (figures
4a and 4b) as a soft-threshold parameter. The
modulus component connection is depicted in
figure 5ain this regard. The modules’ dissimilarity
was set at 0.25, and a total of 7 modules were
produced. A correlation heat-map shows a set
of modules (turquoise, cor=0.63, P=1e52) that
were near to each other in the control samples
and a distinct set of modules (blue, cor=0.65,
P=7e57) near each other in the cancer samples
(figure 5b).

a) b)

Figure 3: Principal Component Analysis (PCA)-based evidence of (a) integrated microarray and (b) TGCA dataset. To this|
end, figure 3 illustrates the results of CA for (a) a combined microarray dataset and (b) the TCGA dataset, demonstrating the
differentiation between control (con) and BC (can) samples. Each data point corresponds to a sample, with color coding employed
to distinguish the groups: red denotes cancer samples, while blue represents control samples. The PCA visualizations depic
the first two principal components (PC1 and PC2), which account for the majority of the variance present in the datasets. In
both cases, a clear clustering of cancer and control samples is observed, signifying distinct gene expression patterns between
the two categories. This observed separation indicates that PCA is effective in reducing data dimensionality while maintaining
the variance that differentiates cancer from control samples, underscoring the utility of these datasets in uncovering critical
molecular distinctions related to BC.
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Figure 5: This figure illustrates WGCNA of gene expression data about BC, contrasting microarray datasets (a, b) with RNA-Seq
datasets (c, d) to uncover co-expressed gene modules and their relationships with BC phenotypes. The dendrograms (a, c) depic
the hierarchical clustering of genes into distinct modules, represented by color-coded branches. While clustering patterns exhibi
similarities across all datasets, some variations are also evident. In the module-trait relationships (b, d), the heatmaps display the]
correlations between module eigengenes (MEs) and BC samples. Notably, significant modules identified in both datasets implyj

a potential involvement in cancer development or progression, although the correlation strength may differ due to variations in
technology. Larger modules could signify fundamental processes, whereas smaller modules might reflect specialized functions.
Gene ontology enrichment analysis may uncover biological pathways linked to BC. Comparing these results with findings from
other studies can further validate the conclusions and provide new insights. This analysis underscores critical gene modules tha
may play a role in BC, presenting opportunities for the identification of therapies and biomarkers.
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Figure 6: The protein-protein interaction (PPl) network is illustrated in control samples. This figure represents protein
interactions observed in control samples, emphasizing significant characteristics such as a high density of nodes, which
signifies intricate interactions, and central hub proteins such as Epidermal Growth Factor Receptor (EGFR) and CD40 (CD40),
which act as key regulators. The modular architecture of the network implies the existence of functional complexes or pathways,
while the discovery of novel interactions may uncover previously unrecognized connections. Important considerations include
the necessity for experimental validation to reduce false positives, employing gene ontology and literature reviews to assess
unctional significance, and acknowledging the dynamic nature of PPI networks, which fluctuate according to cellular conditions,

RNA-Seq Datasets

To determine if the network was scale-free, we
set the power of=8 (scale-free R?=8.5) (figures
4c¢ and 4d) as a soft-threshold parameter. The
modulus component connection is depicted in
figure 5cin this regard. The dissimilarity threshold
for the modules was set to 0.25, resulting in the
generation of 20 distinct modules. Similar to the
results from microarray data, a specific module
set (blue, figure 5d) was grouped in BC samples,
while a distinct module set (dark olive green,
figure 5d) was grouped in the control samples.

Selection of Hub Genes and Pathway Analysis
Control Samples: The common genes of
the dark-olive-green (control samples from
microarray datasets) and turquoise (control
samples from RNA-Seq datasets) modules
were combined to define a set of genes whose
association with control compared to tumor
tissue was well supported. Then, based on
the amount of interaction, Cytoscape and the
online database STRING were used to choose
key genes and significant gene modules. 474
DEGs were categorized into a DEG-based PPI
network complex after calculations were done.
MCODE analysis was applied to identify specific
PPl network components, and a module with
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the highest degree was generated. The module
consists of 24 nodes and 273 edges (figure 6).

BC Samples: The common genes of the
blue (BC-associated) modules from microarray
and RNA-Seq datasets were combined to define
a set of genes whose association with tumor
compared to control tissue was well supported.
Cytoscape and STRING were used to select
the fundamental genes and significant gene
modules linked to BC based on the amount of
interaction. A PPI network was created (figure 7),
and MCODE was applied to identify specific
modules within the PPI network. The module
with the highest degree included 382 edges and
29 nodes (figure 7).

Hub Gene Ontology Analysis in BC

Control Samples: To learn more about the
functional properties of the first module, Gene
Ontology (GO) analysis was performed using the
Enrichr online database (https://maayanlab.cloud/
Enrichr/). The first control tissue-associated
module was analyzed according to three functional
classes, namely Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF).
The top 10 classes were reported according
to P value. Hub genes were associated with
specific enrichments in each of the three groups.
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Figure 7: The protein-protein interaction (PPI) network is illustrated in BC samples. This figure emphasizes the interactions|
lamong proteins and their functional interrelations within the context of BC. Notable characteristics include a high density of
nodes, indicating a complex network of protein interactions, as well as the presence of hub proteins such as ZWINT, TYMS,
land MCM10, which are pivotal in orchestrating the network. The modular architecture of the network suggests the existence of
functional protein complexes or pathways pertinent to BC, including several novel interactions that have not been documented
previously. It is crucial to consider the validation of these interactions, the exploration of their functional significance through
lgene ontology, and the recognition of the dynamic characteristics of PPI networks.

Positive regulation of cellular processes, positive raft, caveola, and bounding membrane of

regulation of cellular biosynthetic processes,
positive regulation of protein phosphorylation,
positive regulation of protein serine/threonine
kinase activity, and regulation of cell population
proliferation were the main functions of hub
genesinthe BP class. Inthe CC class, hub genes
were particularly enriched in focal adhesion,
cell-substrate junction, vesicle, membrane
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organelle. Finally, for the MF class, hub genes
were mostly enriched for RNA polymerase
lI-specific DNA-binding transcription factor
binding, ubiquitin protein ligase binding, DNA-
binding transcription factor binding, ubiquitin-like
protein ligase binding, transcription coregulator
binding (figure 8). KEGG pathway enrichment
analysis was also performed for the hub genes.
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Figure 8: The Gene Ontology analysis of hub genes shows upregulation in control samples compared to BC samples.
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Table 2: Significantly enriched examination of the identification of differentially expressed genes in control samples in the

KEGG pathway
Term P value

Adj. P value Genes

7.86E-09 CCNB1; CHEK1; PLK1; BUB1B; MCM4;
MAD2L1; MCM2

Cell cycle 4.14E-10

Progesterone-mediated oocyte maturation 4.03E-04 0.0038306 CCNB1; PLK1; MAD2L1
Oocyte meiosis 8.47E-04 0.005089732 CCNB1; PLK1; MAD2L1
DNA replication 0.0012404 0.005089732 MCM4; MCM2

Cellular senescence 0.0014656 0.005089732 CCNB1; CHEK1; MYBL2
Homologous recombination 0.0016073 0.005089732 BLM; RAD51

Fanconi anemia pathway 0.0027724 0.007525035 BLM; RAD51

Human T-cell leukemia virus 1 infection 0.0038357 0.009109689 CHEK1; BUB1B; MAD2L1
p53 signaling pathway 0.0050055 0.010567085 CCNB1; CHEK1

FoxO signaling pathway 0.0153991 0.029258385 CCNB1; PLK1

The top four enriched KEGG pathways
were cell cycle, progesterone-mediated

expression of these genes in control samples
implies their possible role as tumor suppressors

oocyte maturation, oocyte meiosis, and DNA
replication. The list of DEGs (top 10 according
to P value) for each pathway is listed in table 2.
To give a better picture to the reader, figure
8 illustrates a GO analysis that depicts the
distribution of hub genes across different GO
categories; namely, BP, CC, and MFs were
identified as being upregulated in control
samples compared to BC samples. Notable
findings indicate that a majority of the hub genes
participate in biological processes such as
cellular regulation and protein phosphorylation,
are associated with cellular components such
as focal adhesions and vesicles, and perform
functions including transcription factor binding
and receptor-ligand interactions. The increased

Biological Process

Cellular Companent

in BC. Itis crucial to further analyze and validate
their functional significance, as GO analysis
only provides a general perspective on gene
functions.

Cancer Samples: The genes with the
smallest enrichment P value in the cancer
hub study were those associated with “Single-
Stranded DNA Binding” in MF, “Regulation
of Cell Cycle Process” in BP, and “Spindle” in
CC (figure 9). Figure 9 presents the results of
GO enrichment analysis about BC-associated
genes, categorized into three distinct domains:
BP, represented in red, CC, depicted in
green, and MF, illustrated in blue. The x-axis
enumerates the enriched GO terms, while the
y-axis reflects the corresponding gene counts.
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Figure 9: Gene Ontology analysis of Identification of Differentially Expressed Genes in BC showed DEGs were organized
within three functional classes, namely biological process (BP), cellular component (CC), and molecular function (MF). The top
10 significantly enriched GO terms in BC are shown for each class.
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Table 3: The enrichment of DEGs in BC in the KEGG pathway (Top 15 according to P value)

Term P value Adj.P value Genes

Pathways in cancer 112E-16 2.11E-14 PDGFRB; EDN1; SMAD3; HSP90AB1, HDAC1; HGF; PTEN; EGFR;
CXCL12; AKT1; CTNNB1; PPARG; TP53; HRAS

Prostate cancer 1.25E-15 1.10E-13 PDGFRB; HSP90AB1; PTEN; AKT1; CTNNB1; TP53; HRAS; EGFR; INS

PI3K-Akt signaling 1.75E-15 1.10E-13 PDGFRB; HSP90AB1; CSF1; NOS3; HGF; PTEN; AKT1; TP53; HRAS;

pathway TLR4; EGFR; INS

Proteoglycans in cancer 1.78E-14 8.35E-13 SRC; HGF; AKT1; CTNNB1; TNF; TP53; HRAS; TLR4; EGFR; ACTB

Rap1 signaling pathway  2.27E-14 8.52E-13 PDGFRB; CSF1; SRC; HGF; AKT1; CTNNB1; HRAS; EGFR; ACTB; INS

Lipid and atherosclerosis 2.87E-14 9.00E-13 CD40; HSP90AB1;, SRC; NOS3; AKT1; PPARG; TNF; TP53; HRAS;
TLR4

Fluid shear stress and 3.48E-14 9.35E-13 EDN1; HSP90AB1; SRC; NOS3; AKT1; CTNNB1; TNF; TP53; ACTB

atherosclerosis

Hepatocellular carcinoma 1.97E-13 4.63E-12 SMAD3; HGF; PTEN; AKT1; CTNNB1; TP53; HRAS; EGFR; ACTB

Focal adhesion 1.00E-12 2.09E-11 PDGFRB; SRC; HGF; PTEN; AKT1; CTNNB1; HRAS; EGFR; ACTB

Melanoma 1.91E-12 3.60E-11 PDGFRB; HGF; PTEN; AKT1; TP53; HRAS; EGFR

Notable observations include “Regulation of Cell
Cycle Process” within the BP domain, “Spindle”
in the CC domain, and “Single-Stranded DNA

Based on KEGG pathway enrichment in
the cancer hub genes, the top four enriched
pathways were pathways in cancer, prostate

Binding”in the MF domain, all of which underscore
their contributions to cancer progression. These
terms highlight essential processes involved in
the regulation of the cell cycle, the functionality
of the mitotic spindle, and the mechanisms of
DNA replication and repair, thereby emphasizing
their critical roles in maintaining genomic stability
and facilitating cancer development.

a) b)

cancer, PI3K-Akt signaling pathway, and
proteoglycans in cancer. In table 3, the top 10
DEGs for each enriched category are shown
in order of P values. Five genes, including
NEK2, MELK, PLK1, AURKB (or STK12), and
Checkpoint Kinase 1 (CHEK1), which are in the
kinase enzyme family and known to oppose
TP53 function, were found during this analysis.
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Figure 10: The prognostic values of the nine core genes in BC are shown. (a) PLKT; (b) AURKB (STK12); (c) CHEKT; (d) MELK;
(e) NEK2. This figure depicts Kaplan-Meier survival analyses for five genes associated with BC: PLK1, STK12, CHEK1, MELK,

land NEK2. It compares the survival probabilities of groups with high expression (represented by red curves) against those with lo
lexpression (indicated by black curves). The analysis reveals that elevated expression levels of all five genes correlate significantl
with reduced survival rates, as evidenced by hazard ratios (HRs) ranging from 1.41 to 1.77 and log-rank P values below 0.001.

Iran J Med Sci October 2025; Vol 50 No 10 691



Soleiman Ekhtiyari M, Ghaderi-Zefrehei M, Mogharari Z, Yousefi M, Bigdeli A, Nasre Esfahani E, et al.

Survival Analysis of Hub Genes

We carried out survival analysis to investigate
the relationship between gene expression of
each of the hub genes and the overall survival
time for BC patients to better understand the
predictive significance of hub genes identified
in this study and uncover possible cancer
progression-related protein-encoding genes.
We concentrated on five important kinase
genes (NEK2, MELK, PLK1, AURKB (STK12),
and CHEKT) that affect pathways linked with
BC development. Depending on their median
expression level, patients were divided into
groups with high or low expression. All hub genes
with higher transcript levels were associated
with considerably poorer overall survival rates in
BC patients. These results imply that these hub
genes are relevant in terms of pathophysiology
for the treatment of BC and deserve further
attention (figure 10).

Structural Aspect of Serine/Threonine Kinase
The serine/threonine kinases identified
as hub genes (NEK2, MELK, PLK1, AURKB
(STK12), and CHEKT) were significantly similar
in their amino acid sequences as demonstrated

by the protein structure and sequence alignment
shown in figure 11. These kinases therefore
share commonalities in conserved regions and
crucial amino acids, particularly within their
binding areas. Therefore, future studies may
focus on the high-similarity sites in this family,
which are involved in both binding and activation
processes, to develop targeted BC treatments.
These findings are broadly applicable beyond
this study as members of other families may
share similar structural features.

BC remains a significant challenge in oncology
due to its complex pathophysiology and
resistance to treatments. This study identified
a high degree of structural similarity in the
binding and active site domains of these five
kinases (NEK2, MELK, PLK1, AURKB (STK12),
and CHEKT), suggesting the potential for
developing therapeutic strategies targeting all
five simultaneously. These kinases are known
to play roles in tumorigenesis, including immune
cellinfiltration, immune escape, cell proliferation,
and cell cycle regulation. In this study, we
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Figure 11: This figure shows (a) 3D structural alignment of serine/threonine kinase proteins. Alignment is shown with the protein-
binding site highlighted in gray. The amino acids of this motif (gray) are specifically indicated in the box in the b section. (b)
Alignment of serine/threonine protein sequences. The binding site is highlighted in the first box (LGKGKFGNV, LGEGAYGEYV,
IGTGGFAKYV, LGKGGFAKC, IGTGSYGRC), and the common active site “D” is highlighted in the second box.
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conducted a large-scale transcriptomic analysis
integrating microarray and RNA-seq datasets,
which identified 444 DEGs. Most DEGs (420)
were up-regulated in BC, while 24 were down-
reqgulated. Through co-expression network
analysis, two distinct gene expression modules
were identified: one enriched in normal tissue
(dark olive green) and another in BC tissue
(blue). PPI network analysis further identified 29
hub genes in BC, of which five serine/threonine
kinase genes (NEK2, MELK, PLK1, AURKB,
and CHEKT) stood out due to their significant
roles in tumor progression and potential as
therapeutic targets. We performed additional
analysis for these five hub genes, which are
known to functionally oppose TP53’s role in
maintaining cellular homeostasis and have
potential for therapeutic use in BC. We found
a high degree of commonality in the structures
of the binding and active site domains among
these five proteins. This observation suggests
that future research endeavors could explore
therapeutic methods to simultaneously regulate
the expression or function of these proteins via
their highly conserved domains.

Each of the identified five kinase proteins has
been previously linked to tumorigenesis. MELK
is closely connected to immune cell infiltration,
function, and production of cytokines such as
Interferon Gamma (IFN-y) and Interferon Alpha
(IFN-a) in BC.®® The NEK2 may cause tumor
immune escape by altering Programmed Death-
Ligand 1 (PD-L1) expression in multiple cancers,
including BC.2% %" High expression of the PLK1
gene has also frequently been observed in breast
and other cancers, and has been targeted as a
potential therapeutic using both siRNA depletion
and small-molecule inhibitors. Reducing PLK1
activity can effectively restrain proliferation
and promote apoptosis among tumor cells.3®
AURKB is overexpressed in numerous human
tumors and regulates multiple processes,
including chromatin condensation and the
phosphorylation of histone H3 on Ser10 and
centrosome type A protein on Ser7 in early G2.3°
Finally, conserved CHEK1 plays an essential
rate-limiting role during the cell cycle, and its
overexpression can lead to tumorigenesis.*
Together, these studies suggest that the five
selected hub genes are functionally connected
and share structural similarities. This reinforces
our finding that these genes are key hubs in BC,
highlighting their critical role.

Serine/threonine kinases are integral to the
advancement and metastasis of BC, acting
as essential regulators of cellular signaling
pathways that facilitate tumor growth and spread.
Their aberrant regulation has been associated

Iran J Med Sci October 2025; Vol 50 No 10

with numerous oncogenic mechanisms, thereby
establishing these kinases as attractive targets
for therapeutic intervention. Rupasinghe and
colleagues emphasized their importance in
cancer biology, pointing out the potential of
small-molecule inhibitors to impede tumor
progression.*' Ghafouri-Fard and colleagues
concentrated on cyclin-dependent kinases, a
specific category of serine/threonine kinases,
and demonstrated their crucial involvement in
cell cycle dysregulation and the pathogenesis of
cancer.*? Saavedra highlighted the therapeutic
potential of mitotic kinases, especially in the
context of aggressive forms such as ftriple-
negative BC.4® Additional research has identified
these kinases as central genes in tumor
dynamics, reinforcing their significant role in
cancer biology and progression. Furthermore,
advancements in structural bioinformatics have
facilitated the discovery of druggable sites within
serine/threonine kinases, which could lead to
the development of targeted therapies.

Our study underscores the significance of
analyzing protein families in the context of cancer
development and progression. Specifically, our
findings offer new insight into the potential of the
serine/threonine kinase protein family as a target
for therapeutic intervention in BC treatment. We
identified five serine/threonine kinases as hub
genes in BC and further found that functionally
relevant domains, the binding and active sites,
had high structural similarity. The serine/
threonine kinase family includes other proteins
and multiple binding and active sites, suggesting
that our findings may generalize beyond the
set of five examined here. The development
of targeted therapies to specifically inhibit
overexpression or activity of these proteins
could lead to improved patient outcomes and
a reduction in the toxicity often associated with
traditional chemotherapy. The use of structural
and sequence alignments in understanding
the functionality of these families is a valuable
avenue for exploration. Our findings suggest that
NEK2, MELK, PLK1, AURKB, and CHEKT could
be utilized for diagnostic screening, targeted
inhibition therapy, and/or combination treatment
monitoring while reducing side effects.

The study offers some insights into the
function of serine/threonine kinases as central
genes in BC; however, several limitations
warrant attention. Firstly, the dependence on
publicly accessible microarray and RNA-Seq
datasets may introduce biases concerning
sample selection, quality, or data processing,
which could compromise the robustness
and generalizability of the results. Secondly,
although the study identifies gene regulatory
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modules and hub genes, it primarily illustrates
associations rather than establishing causality,
necessitating additional experimental validation
to confirm the causal roles of these genes in
the progression of BC. Furthermore, technical
variability between the microarray and RNA-
Seq datasets may influence the outcomes,
despite attempts to integrate them. The survival
analysis linking elevated expression levels
of hub genes to poorer prognoses does not
provide direct clinical applicability, indicating a
need for further clinical validation. Additionally,
the classification of serine/threonine kinases
as hub genes may oversimplify the intricate
biology of BC, highlighting the necessity for
more comprehensive investigations into the
interactions of these kinases with other molecular
pathways. Finally, while structural bioinformatics
suggests potential drug targets, experimental
validation is essential to confirm drug-target
interactions, as computational models may not
adequately reflect in vivo molecular complexities.
These limitations underscore the importance
of conducting further experimental and clinical
studies to validate these findings and investigate
the therapeutic potential of serine/threonine
kinases in BC.

Conclusion

This comprehensive methodology facilitated the
identification of five regulatory hub genes (NEK2,
MELK, PLK1, AURKB (STK12), and CHEKT) that
present significant promise as potential targets
for pharmacological interventions. The hub
genes identified belong to the serine/threonine
kinase protein family, which encompasses
enzymes responsible for the phosphorylation
of serine or threonine residues in proteins, thus
modulating numerous cellular functions. The
identification of these hub genes is particularly
significant, as they may serve as risk factors for
BC, highlighting their essential role in the disease
advancement. A notable discovery is that
these hub genes exhibit structural similarities
within their binding and catalytic domains. This
structural resemblance suggests the possibility
of developing therapeutic strategies capable
of concurrently targeting all five genes. Such
a strategy may prove to be more effective than
focusing on individual genes, potentially resulting
in enhanced treatment outcomes. Numerous
serine/threonine kinase pathways have been
associated with BC, including NEK kinases, PIM
kinases, and the Akt/PKB signaling pathway.
NEK kinases are implicated in the regulation
of the cell cycle and mitotic processes, while
PIM kinases are involved in cell survival and
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proliferation. The Akt/PKB signaling pathway
plays a vital role in cellular metabolism, growth,
and survival. Targeting these pathways may
provide new opportunities for BC treatment. By
concentrating on these pivotal regulatory hubs,
researchers and healthcare professionals may
devise innovative treatment strategies that are
more targeted and effective, ultimately leading
to improved patient outcomes.
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