
Integrated Expression Analysis May Support 
Serine/Threonine Kinases as Common Hub 
Genes in Breast Cancer

Abstract
Background: Breast cancer (BC) is the most common cancer 
affecting women worldwide. There is a strong need to identify 
molecular pathways that might represent effective therapeutic targets. 
Methods: We conducted a large-scale transcriptomic analysis 
using publicly available datasets from the NCBI GEO and 
TCGA databases. Microarray datasets (GSE161533, GSE162228, 
GSE70947, and GSE139038) and RNA-Seq data were analyzed 
to identify differentially expressed genes (DEGs) using cut-off 
criteria of adjusted P<0.05 and |log2FC|>1.  Gene co-expression 
networks were constructed using Weighted Gene co-expression 
Network Analysis (WGCNA) in R (version 1.68), followed by hub 
gene identification with STRING and MCODE tools. Functional 
enrichment was further explored through Gene Ontology analysis.
Results: Two regulatory modules enriched in cancer datasets 
were identified from both microarray and RNA-Seq analyses, 
corresponding to a network of 85 genes, compared to a distinct 
network of 474 genes enriched in control tissue samples. Further 
analyses to identify densely connected gene clusters within these 
networks revealed a cluster `̀ containing 29 cancer-related genes that 
included five hub gene candidates encoding serine/threonine kinase 
family proteins: NimA-Related Protein Kinase 2 (NEK2), Maternal 
Embryonic Leucine Zipper Kinase (MELK), Polo Like Kinase 1 
(PLK1), Aurora Kinase B (AURKB), and Checkpoint Kinase 1 
(CHEK1). Members of this family counter the expression of the 
tumor suppressor and cell cycle regulator Tumor Protein P53 (TP53), 
which is more highly expressed in healthy people. Moreover, all hub 
genes with higher transcript levels were associated with considerably 
poorer overall survival rates in BC patients. These results imply 
that these hub genes are relevant in terms of pathophysiology for 
the treatment of BC and deserve further attention. Kaplan-Meier 
survival analysis demonstrated that increased expression of all 
five genes was significantly associated with decreased survival 
(P<0.001). Hazard ratios (HRs) ranged from 1.41 to 1.77, indicating 
a substantial negative impact on patient survival for each gene.
Conclusion: Survival analysis showed that tumors with higher 
expression levels of hub genes were associated with significantly 
shorter overall survival times among breast cancer patients. This 
finding suggests that these hub genes are highly relevant to BC 
pathophysiology and could be considered targets for monitoring. 
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What’s Known

•	 Serine/threonine kinases, including 
NEK2 (NimA-Related Protein Kinase 2), 
MELK (Maternal Embryonic Leucine Zipper 
Kinase), PLK1 (Polo Like Kinase 1), AURKB 
(Aurora Kinase B), and CHEK1 (Checkpoint 
Kinase 1), are linked to breast cancer 
progression.
•	 These kinases play a critical role in 
regulating the cell cycle and are associated 
with poor overall survival in breast cancer 
patients.

What’s New

•	 This study identifies a cluster of five 
serine/threonine kinases as hub genes 
in breast cancer through integrated 
transcriptomic analysis.
•	 The structural similarities in their 
binding sites suggest potential for targeted 
therapies aimed at these conserved 
domains in breast cancer treatment
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Introduction

Breast cancer (BC) poses a significant threat 
worldwide.1 A survey in 2020 revealed an 
estimated 276,480 new cases of BC diagnosed 
and approximately 42,170 deaths related to 
this disease in the United States alone.2 Early 
detection and intervention can significantly 
hinder the disease progression to a metastatic 
state in numerous BC patients. However, a 
notable proportion, ranging from 20% to 30%, 
ultimately progresses to metastatic disease, 
which accounts for the majority of fatalities 
associated with breast cancer.2, 3 Various 
factors, including tumor subtype, response 
to initial treatment, and biological traits, are 
crucial in the onset of metastasis. Particularly 
aggressive subtypes, such as Receptor tyrosine-
protein kinase erbB-2 or Human Epidermal 
Growth Factor Receptor 2 (HER2)-positive, 
and triple-negative breast cancer, exhibit an 
increased susceptibility to metastasizing.4, 5  
For early detection, precise prognosis, and 
developing specific treatments, it is essential to 
understand the genetic foundation underlying 
this malignancy.6 It is widely recognized that 
Breast cancer type 1 susceptibility protein 1 
(BRCA1) and breast cancer type 2 susceptibility 
protein (BRCA2) mutations increase the risk of 
both breast and ovarian cancers.7-9 Mutations 
in other genes such as Ataxia-Telangiectasia 
Mutated (ATM), BRCA1 Associated RING 
Domain 1 (BARD1), BRCA1 Interacting Protein 
C-Terminal Helicase 1 (BRIP1), Caspase 8 
(CASP8), Cytotoxic T-Lymphocyte Associated 
Protein 4 (CTLA4), Cytochrome P450 Family 
19 Subfamily A Member 1 (CYP19A), Fibroblast 
Growth Factor Receptor (FGRF), Lymphocyte 
Specific Protein 1 (LSP), Mitogen-Activated 
Protein Kinase Kinase Kinase ( MAP3K), Nibrin 
(NBN), RAD51 Recombinase (RAD51), and 
Telomerase Reverse Transcriptase (TERT) 
can also lead to an increased probability 
of developing BC.10-13 Most of these genes 
function as tumor suppressors and have a lower 
prevalence of mutations than BRCA genes and 
are generally associated with a lower risk factor 
for BC. The application of gene expression data 
in survival analysis among patients with BC has 
been explored in several studies.14-16 The TP53 
pathway, whose perturbation is a crucial factor 
in the development of BC, plays an essential role 
in maintaining genome stability. It does this by 
coordinating cell cycle arrest and apoptosis in 
response to DNA damage, thereby reducing the 
risk of passing on damaged genetic material.17 

There are intricate connections between 
the proteins managing mitotic checkpoints and 

regulating cell cycle progression, and those 
that contribute to genomic instability and tumor 
formation within the context of the TP53 pathway.18 
One intriguing aspect of this interplay is a tightly 
regulated feedback loop involving TP53 and 
serine/threonine kinases, including WEE1 G2 
Checkpoint Kinase (WEE1), Polo-Like Kinase 1 
(PLK1), NIMA Related Kinase 2 (NEK2), BUB1 
Mitotic Checkpoint Serine/Threonine Kinase 
(BUB1), TTK Protein Kinase (TTK), AURKB, 
and Aurora Kinase A (AURKA). The analysis 
of publicly available gene expression profiles 
has identified several kinases with potential 
synthetic lethal interactions with TP53, including 
PLK1, NEK2, BUB1, and AURKA. Therapeutic 
targeting of the catalytic domain of serine/
threonine kinases is appealing because it offers 
a druggable target and can limit unfavorable 
effects on control cells. Disrupting essential 
signaling cascades by targeting kinases may 
also impede progression towards metastasis 
while treating BC effectively.19

BC remains a global health problem, with 
genetic factors such as germline BRCA1/2 
variants playing a key role in susceptibility. These 
mutations, which are widespread in different 
populations, play a role not only in breast and 
ovarian cancers but also in prostate cancer, as 
reported by Cioffi and colleagues.20 Reproductive 
risk factors have a further influence on hereditary 
BC, as systematically analyzed by Springer.21 
Advances in genetic modeling, such as the Breast 
and Ovarian Analysis of Disease Incidence and 
Carrier Estimation Algorithm (BOADICEA) model 
validated by Møller and colleagues, improve 
forecasting pathogenic variants in cancer 
susceptibility genes and developing reliable 
tools for risk evaluation.22 Complementing these 
genetic insights, bioinformatic analyses, including 
Co-expression Network Analysis as applied 
by Xie and colleagues, have revealed disease 
mechanisms and important genetic factors.23 
Molecular studies, such as that of Asparuhova 
and colleagues, have disclosed the regulatory 
role of Transforming Growth Factor Beta (TGF-
β1) and Insulin-Like Growth Factor 1 (IGF-1) 
in cancer progression and bone regeneration 
and identified potential therapeutic targets.24, 25  
These integrated genetic, bioinformatic, and 
molecular approaches are crucial to unravel 
the complex mechanisms of BC and develop 
targeted therapies.

Innovative in silico techniques have facilitated 
investigations into gene functionality, diseases, 
and precision medicine at the molecular level.26 
Through an integrative approach to identify sets 
of genes associated with survival, Baculoviral IAP 
Repeat Containing 5 (BIRC5), Cyclin B1 (CCNB1), 
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and MYB Proto-Oncogene Like 2 (MYBL2) were 
found to have significant associations with BC 
patients’ survival chances.15 Here, we aimed to 
conduct in-depth bioinformatic analyses of a 
large collection of publicly available datasets to 
identify hub genes and key pathways involved 
in BC. Our approach included examining the 
structural bioinformatics of these hub genes, with 
the ultimate goal of assessing their prognostic 
and therapeutic potential in BC.

Materials and Methods

Datasets 
Following a keyword-driven search, we 

retrieved four gene expression data series 
from the NCBI GEO website (https://www.ncbi.
nlm.nih.gov/). The datasets identified were 
GSE161533, GSE162228, GSE70947, and 
GSE139038. The GPL571 platform was utilized 
for generating datasets of both GSE161533 and 
GSE162228; whereas the dataset of GSE7094 
was generated using the GPL13607 platform. 
The GPL27630 platform was used to create a 
microarray dataset for GSE139038. In total, the 
four datasets comprised 464 samples, including 
248 BC samples and 216 control samples. 
Detailed information on the studies included in 
this analysis is provided in table 1.

To identify differentially expressed genes 
(DEGs) between cancerous and non-cancerous 
samples, the Bioconductor package was used. 
Perl (version 5.0) available online at http://
www.perl.org/ was employed for background 
correction as well as normalization purposes 
afterwards. We retrieved an equivalent set of 
RNA-Seq datasets by preserving the same 
keyword search as above. Data was downloaded 
from TCGA (The Cancer Genome Atlas) (https://

cancergenome.nih.gov/), and analyzed using 
the limma package (an R add-on) using cut-
off criteria of adjusted P<0.05 and |log2FC|>1. 
This dataset comprised 563 BC samples and 
114 control samples in total, as obtained from 
TCGA’s BC dataset. For gene expression 
calculations, the edgeR package was used, 
following similar methods used to evaluate 
integrated GEO datasets for consistency in data 
analysis. Figure 1 depicts a flowchart outlining 
the data analysis pipeline.

Weighted Gene Co-expression Network Analysis 
The expression data profiles were used to 

generate gene co-expression networks using the 
Weighted Gene Co-expression Network Analysis 
(WGCNA) package in R (version 1.68). A 
weighted adjacency matrix was constructed using 
the power function β, as previously described.31, 32  
We selected an appropriate β value to enhance 
matrix similarity and construct a co-expression 
network. Hierarchical weighting matrix clustering 
was used to define the modules. Intermediate 
graft hierarchies were conducted based on 
the calculation of Topological Overlap Matrix 
(TOM) -based dissimilarity, with the lowest size 
considered for the gene dendrogram. Genes with 
similar expression indices were categorized within 
identical gene units using the Dynamic Tree Cut 
algorithm. The Enrichr online database (https://
maayanlab.cloud/Enrichr/) was used to analyze 
the molecular and functional characteristics 
and KEGG pathways of the DEGs. Statistical 
significance was set at P<0.05. The STRING 
database (https://string-db.org/) was applied to 
obtain protein-protein interaction (PPI) information 
for the DEGs. Then, Cytoscape software (https://
cytoscape.org) (version 3.9.1) was employed 
to assemble a PPI association network.  

Table 1: Detailed information on the studies included in this analysis.
GSE No. Study Number of 

samples
Platform Organism

GSE161533 Expression data from esophageal squamous 
cell carcinoma patients27

84 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 
Array

Homo 
sapiens

GSE162228 Concordance of PAM50 molecular subtyping 
between oligonucleotide microarray and 
NanoString nCounter assay for Taiwanese 
BC28

133 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 
Array

Homo 
sapiens

GSE70947 Age and estrogen-dependent inflammation 
in breast adenocarcinoma and normal breast 
tissue [cohort_2]29

296 Agilent-028004 SurePrint G3 
Human GE 8x60K Microarray 
(Feature Number version)

Homo 
sapiens

GSE139038 Gene expression profiling in paired normal, 
apparently normal, and breast tumor tissues30

65 Print_1437(Block_Column_Row 
IDs)

Homo 
sapiens

[HG-U133-Plus-2] Affymetrix Human Genome U133 Plus 2.0 Array: A widely used microarray platform for analyzing gene 
expression profiles. It covers over 47,000 transcripts and variants, providing comprehensive coverage of the human genome; 
Agilent-028004 SurePrint G3 Human GE 8x60K Microarray (version with function number): A high-resolution microarray 
platform with 60,000 probes per array for detailed gene expression analysis with increased sensitivity and specificity in 
transcript detection; Print_1437 (Block-Column-Row-IDs): A custom microarray platform organized by block, column, and row 
identifiers to uniquely identify probes and enable precise measurement of gene expression.
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Figure 1: This figure illustrates the comprehensive bioinformatics data analysis pipeline used here for analyzing gene expression 
data from both microarray and RNA-seq datasets, sourced from the GEO and TCGA databases. The process begins with the 
retrieval and preprocessing of four datasets from the GEO database and RNA-seq data from TCGA, comprising a total of 464 
samples (248 breast cancer samples and 216 control samples) for GEO and 677 samples (563 breast cancer samples and 114 
control samples) for TCGA.
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The Molecular Complex Detection (MCODE) 
plug-in in Cytoscape was employed to extract 
core gene modules from the PPI network, 
applying the following parameters: degree cut-
off≥2, node score cut-off≥0.2, K-core≥2, and a 
maximum depth of 100.

Statistical Analysis 
The Kaplan-Meier Plotter online database 

(http://www.kmplot.com) was employed to 
perform the survival analyses of the selected 
core genes. The hazard ratio (HR) with 95% 
confidence intervals and log-rank P value were 
determined and shown on the plot.

Structural Bioinformatics for Upregulated Serine/
Threonine Kinases

To acquire insights into the functionality of 
the serine/threonine kinase protein family, we 
employed a robust methodology that combines 
both sequence and structural alignments. 
Sequencing and structural alignments for these 

serine/threonine kinase proteins were conducted 
using the YASARA (version 19.12.14) software 
and the PRALINE service with the MUSTANG 
algorithm.33, 34 Our working hypothesis centers 
on the idea that, when analyzed in the context 
of protein structures, structural and sequence 
alignments may provide mechanisms for 
controlling the activity of this family of proteins.

Results

Determination of DEGs in BC
Analysis of BC samples in comparison to 

control samples of the four GEO microarray data 
series (GSE161533, GSE162228, GSE70947, 
and GSE139038) revealed upregulated and 
downregulated genes for each of the selected 
datasets (GSE161533: 476 upregulated, 399 
downregulated; GSE162228: 183 upregulated, 
109 downregulated; GSE70947: 285 
upregulated, 292 downregulated; GSE139038: 
1016 upregulated, 391 downregulated) (figure 2).

Figure 2: Volcano plots a, b, c, and d are presented for the GSE70947, GSE162228, GSE161533, and GSE139038 datasets. In 
general, this figure depicts the DEGs between control and BC samples across four distinct datasets (GSE70947, GSE162228, 
GSE161533, and GSE139038). Each plot features the log2 fold change (log2FC) on the horizontal axis and the -log10 P value 
on the vertical axis. Genes that are significantly upregulated are marked in red (log2FC>1, P<0.05), while downregulated 
genes are indicated in blue (log2FC<-1, P<0.05), and non-significant genes are shown in gray. The plots distinctly separate 
significantly DEGs from those that are not significant, underscoring the influence of BC on gene expression. The variations in 
log2FC and -log10 P values across the datasets reflect differences in the extent and significance of gene expression alterations. 
These visual representations are essential for pinpointing critical genes associated with cancer biology, which may act as 
potential biomarkers or therapeutic targets for future research.
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In other words, figure 2 shows volcano 
plots of differentially expressed genes (DEGs) 
from four datasets (GSE70947, GSE162228, 
GSE161533, GSE139038) comparing BC (BC) 
and control samples (P<0.05, |log2FC|>1). The 
x-axis represents the log2 fold changes (extent 
of gene expression), and the y-axis shows the 
-log10 P values (statistical significance). Red 
and blue dots indicate significantly upregulated 
and downregulated genes in BC, respectively, 
while gray dots represent non-significant genes. 
The graphs highlight important DEGs in different 
datasets and show potential biomarkers and 
therapeutic targets for BC. 

The analysis of the four integrated datasets 
together identified a total of 1083 shared genes, 
with 444 DEGs, comprising 420 upregulated 
and 24 downregulated genes in BC samples 
compared to control samples (|log2FC|>1). 
There were 15275 genes found in the RNA-
Seq dataset (brca-tcga-pan-can-atlas-2018) 
from the TCGA database. The analysis of this 
dataset identified 1279 DEGs in total, including 
810 upregulated and 469 downregulated genes 
in BC samples compared to control samples 
(|log2FC|>1). Principal components analysis 
(PCA) of the datasets revealed that they were 
of sufficient quality for further bioinformatics 
processing. The PCA of expressed genes 
showed clustering of the expression profiles 
of control compared to BC samples, as well as 
adequate quality evaluation markers for future 

data processing (figure 3). Figure 3 shows 
plots of PCA for (a) the integrated microarray 
dataset and (b) the TCGA dataset, showing a 
clear separation between control (con) and 
cancer (col) groups. Each point represents a 
sample, with the first principal component 1 
(PC1) and the second principal component 2 
(PC2) showing the highest variance. The clear 
clustering of the groups emphasizes the different 
expression profiles between cancer and control 
samples and confirms the quality of the dataset 
and the consistency of the grouping. Weighted 
correlation network analysis found that similar 
genes from two datasets were consistently 
expressed in BC samples, in contrast to the 
control samples.

WGCNA Microarray Datasets
We analyzed 2335 genes with comparable 

expression levels using the WGCNA R program. 
To determine if the network was scale-free, we 
set the power of =3 (scale-free R2=8.5) (figures 
4a and 4b) as a soft-threshold parameter. The 
modulus component connection is depicted in 
figure 5a in this regard. The modules’ dissimilarity 
was set at 0.25, and a total of 7 modules were 
produced. A correlation heat-map shows a set 
of modules (turquoise, cor=0.63, P=1e52) that 
were near to each other in the control samples 
and a distinct set of modules (blue, cor=0.65, 
P=7e57) near each other in the cancer samples 
(figure 5b).

Figure 3: Principal Component Analysis (PCA)-based evidence of (a) integrated microarray and (b) TGCA dataset. To this 
end, figure 3 illustrates the results of CA for (a) a combined microarray dataset and (b) the TCGA dataset, demonstrating the 
differentiation between control (con) and BC (can) samples. Each data point corresponds to a sample, with color coding employed 
to distinguish the groups: red denotes cancer samples, while blue represents control samples. The PCA visualizations depict 
the first two principal components (PC1 and PC2), which account for the majority of the variance present in the datasets. In 
both cases, a clear clustering of cancer and control samples is observed, signifying distinct gene expression patterns between 
the two categories. This observed separation indicates that PCA is effective in reducing data dimensionality while maintaining 
the variance that differentiates cancer from control samples, underscoring the utility of these datasets in uncovering critical 
molecular distinctions related to BC.
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Figure 4: The figure shows the selection of soft-thresholding power (β) for microarray (a, b) and RNA-Seq datasets (c, d). The 
selected β ensures an R²≥0.85 for the scale-free topology (a, c) while maintaining a reduced mean connectivity (b, d), which 
optimizes the network design.

Figure 5: This figure illustrates WGCNA of gene expression data about BC, contrasting microarray datasets (a, b) with RNA-Seq 
datasets (c, d) to uncover co-expressed gene modules and their relationships with BC phenotypes. The dendrograms (a, c) depict 
the hierarchical clustering of genes into distinct modules, represented by color-coded branches. While clustering patterns exhibit 
similarities across all datasets, some variations are also evident. In the module-trait relationships (b, d), the heatmaps display the 
correlations between module eigengenes (MEs) and BC samples. Notably, significant modules identified in both datasets imply 
a potential involvement in cancer development or progression, although the correlation strength may differ due to variations in 
technology. Larger modules could signify fundamental processes, whereas smaller modules might reflect specialized functions. 
Gene ontology enrichment analysis may uncover biological pathways linked to BC. Comparing these results with findings from 
other studies can further validate the conclusions and provide new insights. This analysis underscores critical gene modules that 
may play a role in BC, presenting opportunities for the identification of therapies and biomarkers.
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RNA-Seq Datasets 
To determine if the network was scale-free, we 

set the power of=8 (scale-free R2=8.5) (figures 
4c and 4d) as a soft-threshold parameter. The 
modulus component connection is depicted in 
figure 5c in this regard. The dissimilarity threshold 
for the modules was set to 0.25, resulting in the 
generation of 20 distinct modules. Similar to the 
results from microarray data, a specific module 
set (blue, figure 5d) was grouped in BC samples, 
while a distinct module set (dark olive green, 
figure 5d) was grouped in the control samples.

Selection of Hub Genes and Pathway Analysis
Control Samples: The common genes of 

the dark-olive-green (control samples from 
microarray datasets) and turquoise (control 
samples from RNA-Seq datasets) modules 
were combined to define a set of genes whose 
association with control compared to tumor 
tissue was well supported. Then, based on 
the amount of interaction, Cytoscape and the 
online database STRING were used to choose 
key genes and significant gene modules. 474 
DEGs were categorized into a DEG-based PPI 
network complex after calculations were done. 
MCODE analysis was applied to identify specific 
PPI network components, and a module with 

the highest degree was generated. The module 
consists of 24 nodes and 273 edges (figure 6).

BC Samples: The common genes of the 
blue (BC-associated) modules from microarray 
and RNA-Seq datasets were combined to define 
a set of genes whose association with tumor 
compared to control tissue was well supported. 
Cytoscape and STRING were used to select 
the fundamental genes and significant gene 
modules linked to BC based on the amount of 
interaction. A PPI network was created (figure 7),  
and MCODE was applied to identify specific 
modules within the PPI network. The module 
with the highest degree included 382 edges and 
29 nodes (figure 7).

Hub Gene Ontology Analysis in BC 
Control Samples: To learn more about the 

functional properties of the first module, Gene 
Ontology (GO) analysis was performed using the 
Enrichr online database (https://maayanlab.cloud/
Enrichr/). The first control tissue-associated 
module was analyzed according to three functional 
classes, namely Biological Process (BP), Cellular 
Component (CC), and Molecular Function (MF). 
The top 10 classes were reported according 
to P value. Hub genes were associated with 
specific enrichments in each of the three groups.  

Figure 6: The protein-protein interaction (PPI) network is illustrated in control samples. This figure represents protein 
interactions observed in control samples, emphasizing significant characteristics such as a high density of nodes, which 
signifies intricate interactions, and central hub proteins such as Epidermal Growth Factor Receptor (EGFR) and CD40 (CD40), 
which act as key regulators. The modular architecture of the network implies the existence of functional complexes or pathways, 
while the discovery of novel interactions may uncover previously unrecognized connections. Important considerations include 
the necessity for experimental validation to reduce false positives, employing gene ontology and literature reviews to assess 
functional significance, and acknowledging the dynamic nature of PPI networks, which fluctuate according to cellular conditions. 



Serine/threonine kinases identified as common hub genes in breast cancer

Iran J Med Sci October 2025; Vol 50 No 10� 689

Positive regulation of cellular processes, positive 
regulation of cellular biosynthetic processes, 
positive regulation of protein phosphorylation, 
positive regulation of protein serine/threonine 
kinase activity, and regulation of cell population 
proliferation were the main functions of hub 
genes in the BP class. In the CC class, hub genes 
were particularly enriched in focal adhesion, 
cell-substrate junction, vesicle, membrane 

raft, caveola, and bounding membrane of 
organelle. Finally, for the MF class, hub genes 
were mostly enriched for RNA polymerase 
II-specific DNA-binding transcription factor 
binding, ubiquitin protein ligase binding, DNA-
binding transcription factor binding, ubiquitin-like 
protein ligase binding, transcription coregulator 
binding (figure 8). KEGG pathway enrichment 
analysis was also performed for the hub genes.  

Figure 7: The protein-protein interaction (PPI) network is illustrated in BC samples. This figure emphasizes the interactions 
among proteins and their functional interrelations within the context of BC. Notable characteristics include a high density of 
nodes, indicating a complex network of protein interactions, as well as the presence of hub proteins such as ZWINT, TYMS, 
and MCM10, which are pivotal in orchestrating the network. The modular architecture of the network suggests the existence of 
functional protein complexes or pathways pertinent to BC, including several novel interactions that have not been documented 
previously. It is crucial to consider the validation of these interactions, the exploration of their functional significance through 
gene ontology, and the recognition of the dynamic characteristics of PPI networks.

Figure 8: The Gene Ontology analysis of hub genes shows upregulation in control samples compared to BC samples.
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The top four enriched KEGG pathways 
were cell cycle, progesterone-mediated 
oocyte maturation, oocyte meiosis, and DNA 
replication. The list of DEGs (top 10 according 
to P value) for each pathway is listed in table 2.  
To give a better picture to the reader, figure 
8 illustrates a GO analysis that depicts the 
distribution of hub genes across different GO 
categories; namely, BP, CC, and MFs were 
identified as being upregulated in control 
samples compared to BC samples. Notable 
findings indicate that a majority of the hub genes 
participate in biological processes such as 
cellular regulation and protein phosphorylation, 
are associated with cellular components such 
as focal adhesions and vesicles, and perform 
functions including transcription factor binding 
and receptor-ligand interactions. The increased 

expression of these genes in control samples 
implies their possible role as tumor suppressors 
in BC. It is crucial to further analyze and validate 
their functional significance, as GO analysis 
only provides a general perspective on gene 
functions. 

Cancer Samples: The genes with the 
smallest enrichment P value in the cancer 
hub study were those associated with “Single-
Stranded DNA Binding” in MF, “Regulation 
of Cell Cycle Process” in BP, and “Spindle” in 
CC (figure 9). Figure 9 presents the results of 
GO enrichment analysis about BC-associated 
genes, categorized into three distinct domains: 
BP, represented in red, CC, depicted in 
green, and MF, illustrated in blue. The x-axis 
enumerates the enriched GO terms, while the 
y-axis reflects the corresponding gene counts.  

Table 2: Significantly enriched examination of the identification of differentially expressed genes in control samples in the 
KEGG pathway
Term P value Adj. P value Genes
Cell cycle 4.14E-10 7.86E-09 CCNB1; CHEK1; PLK1; BUB1B; MCM4; 

MAD2L1; MCM2
Progesterone-mediated oocyte maturation 4.03E-04 0.0038306 CCNB1; PLK1; MAD2L1
Oocyte meiosis 8.47E-04 0.005089732 CCNB1; PLK1; MAD2L1
DNA replication 0.0012404 0.005089732 MCM4; MCM2
Cellular senescence 0.0014656 0.005089732 CCNB1; CHEK1; MYBL2
Homologous recombination 0.0016073 0.005089732 BLM; RAD51
Fanconi anemia pathway 0.0027724 0.007525035 BLM; RAD51
Human T-cell leukemia virus 1 infection 0.0038357 0.009109689 CHEK1; BUB1B; MAD2L1
p53 signaling pathway 0.0050055 0.010567085 CCNB1; CHEK1
FoxO signaling pathway 0.0153991 0.029258385 CCNB1; PLK1

Figure 9: Gene Ontology analysis of Identification of Differentially Expressed Genes in BC showed DEGs were organized 
within three functional classes, namely biological process (BP), cellular component (CC), and molecular function (MF). The top 
10 significantly enriched GO terms in BC are shown for each class. 
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Notable observations include “Regulation of Cell 
Cycle Process” within the BP domain, “Spindle” 
in the CC domain, and “Single-Stranded DNA 
Binding” in the MF domain, all of which underscore 
their contributions to cancer progression. These 
terms highlight essential processes involved in 
the regulation of the cell cycle, the functionality 
of the mitotic spindle, and the mechanisms of 
DNA replication and repair, thereby emphasizing 
their critical roles in maintaining genomic stability 
and facilitating cancer development.

Based on KEGG pathway enrichment in 
the cancer hub genes, the top four enriched 
pathways were pathways in cancer, prostate 
cancer, PI3K-Akt signaling pathway, and 
proteoglycans in cancer. In table 3, the top 10 
DEGs for each enriched category are shown 
in order of P values. Five genes, including 
NEK2, MELK, PLK1, AURKB (or STK12), and 
Checkpoint Kinase 1 (CHEK1), which are in the 
kinase enzyme family and known to oppose 
TP53 function, were found during this analysis. 

Table 3: The enrichment of DEGs in BC in the KEGG pathway (Top 15 according to P value)
Term P value Adj. P value Genes
Pathways in cancer 1.12E-16 2.11E-14 PDGFRB; EDN1; SMAD3; HSP90AB1; HDAC1; HGF; PTEN; EGFR; 

CXCL12; AKT1; CTNNB1; PPARG; TP53; HRAS
Prostate cancer 1.25E-15 1.10E-13 PDGFRB; HSP90AB1; PTEN; AKT1; CTNNB1; TP53; HRAS; EGFR; INS
PI3K-Akt signaling 
pathway

1.75E-15 1.10E-13 PDGFRB; HSP90AB1; CSF1; NOS3; HGF; PTEN; AKT1; TP53; HRAS; 
TLR4; EGFR; INS

Proteoglycans in cancer 1.78E-14 8.35E-13 SRC; HGF; AKT1; CTNNB1; TNF; TP53; HRAS; TLR4; EGFR; ACTB
Rap1 signaling pathway 2.27E-14 8.52E-13 PDGFRB; CSF1; SRC; HGF; AKT1; CTNNB1; HRAS; EGFR; ACTB; INS
Lipid and atherosclerosis 2.87E-14 9.00E-13 CD40; HSP90AB1; SRC; NOS3; AKT1; PPARG; TNF; TP53; HRAS; 

TLR4
Fluid shear stress and 
atherosclerosis

3.48E-14 9.35E-13 EDN1; HSP90AB1; SRC; NOS3; AKT1; CTNNB1; TNF; TP53; ACTB

Hepatocellular carcinoma 1.97E-13 4.63E-12 SMAD3; HGF; PTEN; AKT1; CTNNB1; TP53; HRAS; EGFR; ACTB
Focal adhesion 1.00E-12 2.09E-11 PDGFRB; SRC; HGF; PTEN; AKT1; CTNNB1; HRAS; EGFR; ACTB
Melanoma 1.91E-12 3.60E-11 PDGFRB; HGF; PTEN; AKT1; TP53; HRAS; EGFR

Figure 10: The prognostic values of the nine core genes in BC are shown. (a) PLK1; (b) AURKB (STK12); (c) CHEK1; (d) MELK; 
(e) NEK2. This figure depicts Kaplan-Meier survival analyses for five genes associated with BC: PLK1, STK12, CHEK1, MELK, 
and NEK2. It compares the survival probabilities of groups with high expression (represented by red curves) against those with low 
expression (indicated by black curves). The analysis reveals that elevated expression levels of all five genes correlate significantly 
with reduced survival rates, as evidenced by hazard ratios (HRs) ranging from 1.41 to 1.77 and log-rank P values below 0.001.
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Survival Analysis of Hub Genes
We carried out survival analysis to investigate 

the relationship between gene expression of 
each of the hub genes and the overall survival 
time for BC patients to better understand the 
predictive significance of hub genes identified 
in this study and uncover possible cancer 
progression-related protein-encoding genes. 
We concentrated on five important kinase 
genes (NEK2, MELK, PLK1, AURKB (STK12), 
and CHEK1) that affect pathways linked with 
BC development. Depending on their median 
expression level, patients were divided into 
groups with high or low expression. All hub genes 
with higher transcript levels were associated 
with considerably poorer overall survival rates in 
BC patients. These results imply that these hub 
genes are relevant in terms of pathophysiology 
for the treatment of BC and deserve further 
attention (figure 10).

Structural Aspect of Serine/Threonine Kinase
The serine/threonine kinases identified 

as hub genes (NEK2, MELK, PLK1, AURKB 
(STK12), and CHEK1) were significantly similar 
in their amino acid sequences as demonstrated 

by the protein structure and sequence alignment 
shown in figure 11. These kinases therefore 
share commonalities in conserved regions and 
crucial amino acids, particularly within their 
binding areas. Therefore, future studies may 
focus on the high-similarity sites in this family, 
which are involved in both binding and activation 
processes, to develop targeted BC treatments. 
These findings are broadly applicable beyond 
this study as members of other families may 
share similar structural features. 

Discussion

BC remains a significant challenge in oncology 
due to its complex pathophysiology and 
resistance to treatments. This study identified 
a high degree of structural similarity in the 
binding and active site domains of these five 
kinases (NEK2, MELK, PLK1, AURKB (STK12), 
and CHEK1), suggesting the potential for 
developing therapeutic strategies targeting all 
five simultaneously. These kinases are known 
to play roles in tumorigenesis, including immune 
cell infiltration, immune escape, cell proliferation, 
and cell cycle regulation. In this study, we 

Figure 11: This figure shows (a) 3D structural alignment of serine/threonine kinase proteins. Alignment is shown with the protein-
binding site highlighted in gray. The amino acids of this motif (gray) are specifically indicated in the box in the b section. (b) 
Alignment of serine/threonine protein sequences. The binding site is highlighted in the first box (LGKGKFGNV, LGEGAYGEV, 
IGTGGFAKV, LGKGGFAKC, IGTGSYGRC), and the common active site “D” is highlighted in the second box. 
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conducted a large-scale transcriptomic analysis 
integrating microarray and RNA-seq datasets, 
which identified 444 DEGs. Most DEGs (420) 
were up-regulated in BC, while 24 were down-
regulated. Through co-expression network 
analysis, two distinct gene expression modules 
were identified: one enriched in normal tissue 
(dark olive green) and another in BC tissue 
(blue). PPI network analysis further identified 29 
hub genes in BC, of which five serine/threonine 
kinase genes (NEK2, MELK, PLK1, AURKB, 
and CHEK1) stood out due to their significant 
roles in tumor progression and potential as 
therapeutic targets. We performed additional 
analysis for these five hub genes, which are 
known to functionally oppose TP53’s role in 
maintaining cellular homeostasis and have 
potential for therapeutic use in BC. We found 
a high degree of commonality in the structures 
of the binding and active site domains among 
these five proteins. This observation suggests 
that future research endeavors could explore 
therapeutic methods to simultaneously regulate 
the expression or function of these proteins via 
their highly conserved domains.

Each of the identified five kinase proteins has 
been previously linked to tumorigenesis. MELK 
is closely connected to immune cell infiltration, 
function, and production of cytokines such as 
Interferon Gamma (IFN-γ) and Interferon Alpha 
(IFN-α) in BC.35 The NEK2 may cause tumor 
immune escape by altering Programmed Death-
Ligand 1 (PD-L1) expression in multiple cancers, 
including BC.36, 37 High expression of the PLK1 
gene has also frequently been observed in breast 
and other cancers, and has been targeted as a 
potential therapeutic using both siRNA depletion 
and small-molecule inhibitors. Reducing PLK1 
activity can effectively restrain proliferation 
and promote apoptosis among tumor cells.38 
AURKB is overexpressed in numerous human 
tumors and regulates multiple processes, 
including chromatin condensation and the 
phosphorylation of histone H3 on Ser10 and 
centrosome type A protein on Ser7 in early G2.39 
Finally, conserved CHEK1 plays an essential 
rate-limiting role during the cell cycle, and its 
overexpression can lead to tumorigenesis.40 
Together, these studies suggest that the five 
selected hub genes are functionally connected 
and share structural similarities. This reinforces 
our finding that these genes are key hubs in BC, 
highlighting their critical role.

Serine/threonine kinases are integral to the 
advancement and metastasis of BC, acting 
as essential regulators of cellular signaling 
pathways that facilitate tumor growth and spread. 
Their aberrant regulation has been associated 

with numerous oncogenic mechanisms, thereby 
establishing these kinases as attractive targets 
for therapeutic intervention. Rupasinghe and 
colleagues emphasized their importance in 
cancer biology, pointing out the potential of 
small-molecule inhibitors to impede tumor 
progression.41 Ghafouri-Fard and colleagues 
concentrated on cyclin-dependent kinases, a 
specific category of serine/threonine kinases, 
and demonstrated their crucial involvement in 
cell cycle dysregulation and the pathogenesis of 
cancer.42 Saavedra highlighted the therapeutic 
potential of mitotic kinases, especially in the 
context of aggressive forms such as triple-
negative BC.43 Additional research has identified 
these kinases as central genes in tumor 
dynamics, reinforcing their significant role in 
cancer biology and progression. Furthermore, 
advancements in structural bioinformatics have 
facilitated the discovery of druggable sites within 
serine/threonine kinases, which could lead to 
the development of targeted therapies.

Our study underscores the significance of 
analyzing protein families in the context of cancer 
development and progression. Specifically, our 
findings offer new insight into the potential of the 
serine/threonine kinase protein family as a target 
for therapeutic intervention in BC treatment. We 
identified five serine/threonine kinases as hub 
genes in BC and further found that functionally 
relevant domains, the binding and active sites, 
had high structural similarity. The serine/
threonine kinase family includes other proteins 
and multiple binding and active sites, suggesting 
that our findings may generalize beyond the 
set of five examined here. The development 
of targeted therapies to specifically inhibit 
overexpression or activity of these proteins 
could lead to improved patient outcomes and 
a reduction in the toxicity often associated with 
traditional chemotherapy. The use of structural 
and sequence alignments in understanding 
the functionality of these families is a valuable 
avenue for exploration. Our findings suggest that 
NEK2, MELK, PLK1, AURKB, and CHEK1 could 
be utilized for diagnostic screening, targeted 
inhibition therapy, and/or combination treatment 
monitoring while reducing side effects.

The study offers some insights into the 
function of serine/threonine kinases as central 
genes in BC; however, several limitations 
warrant attention. Firstly, the dependence on 
publicly accessible microarray and RNA-Seq 
datasets may introduce biases concerning 
sample selection, quality, or data processing, 
which could compromise the robustness 
and generalizability of the results. Secondly, 
although the study identifies gene regulatory 
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modules and hub genes, it primarily illustrates 
associations rather than establishing causality, 
necessitating additional experimental validation 
to confirm the causal roles of these genes in 
the progression of BC. Furthermore, technical 
variability between the microarray and RNA-
Seq datasets may influence the outcomes, 
despite attempts to integrate them. The survival 
analysis linking elevated expression levels 
of hub genes to poorer prognoses does not 
provide direct clinical applicability, indicating a 
need for further clinical validation. Additionally, 
the classification of serine/threonine kinases 
as hub genes may oversimplify the intricate 
biology of BC, highlighting the necessity for 
more comprehensive investigations into the 
interactions of these kinases with other molecular 
pathways. Finally, while structural bioinformatics 
suggests potential drug targets, experimental 
validation is essential to confirm drug-target 
interactions, as computational models may not 
adequately reflect in vivo molecular complexities. 
These limitations underscore the importance 
of conducting further experimental and clinical 
studies to validate these findings and investigate 
the therapeutic potential of serine/threonine 
kinases in BC. 

Conclusion

This comprehensive methodology facilitated the 
identification of five regulatory hub genes (NEK2, 
MELK, PLK1, AURKB (STK12), and CHEK1) that 
present significant promise as potential targets 
for pharmacological interventions. The hub 
genes identified belong to the serine/threonine 
kinase protein family, which encompasses 
enzymes responsible for the phosphorylation 
of serine or threonine residues in proteins, thus 
modulating numerous cellular functions. The 
identification of these hub genes is particularly 
significant, as they may serve as risk factors for 
BC, highlighting their essential role in the disease 
advancement. A notable discovery is that 
these hub genes exhibit structural similarities 
within their binding and catalytic domains. This 
structural resemblance suggests the possibility 
of developing therapeutic strategies capable 
of concurrently targeting all five genes. Such 
a strategy may prove to be more effective than 
focusing on individual genes, potentially resulting 
in enhanced treatment outcomes. Numerous 
serine/threonine kinase pathways have been 
associated with BC, including NEK kinases, PIM 
kinases, and the Akt/PKB signaling pathway. 
NEK kinases are implicated in the regulation 
of the cell cycle and mitotic processes, while 
PIM kinases are involved in cell survival and 

proliferation. The Akt/PKB signaling pathway 
plays a vital role in cellular metabolism, growth, 
and survival. Targeting these pathways may 
provide new opportunities for BC treatment. By 
concentrating on these pivotal regulatory hubs, 
researchers and healthcare professionals may 
devise innovative treatment strategies that are 
more targeted and effective, ultimately leading 
to improved patient outcomes.
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