Production of a Novel Multi-Epitope Peptide Vaccine against Hepatocellular Carcinoma

Fatemeh Motamedi Dehbarez, MD; Shirin Mahmoodi, PhD
Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran

Correspondence:
Shirin Mahmoodi, PhD;
Department of Medical Biotechnology, Fasa University of Medical Sciences, Avicenna Sq., Postal code: 74616-86888, Fasa, Iran
Tel: +98 71 53350998
Fax: +98 71 53350994
Email: sh.mahmoodi@fums.ac.ir
Received: 28 April 2021
Revised: 11 July 2021
Accepted: 28 August 2021

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the prevalent cancers in the world with a high recurrence rate. In recent years, different researches have focused on designing efficient multi-epitope peptide vaccines against HCC. In designing these vaccines, over-expressed antigens in HCC patients, such as α-fetoprotein (AFP) and Glypican-3 (GPC-3), have been considered. In our previous study, a multi-epitope peptide vaccine for HCC was designed by *in silico* methods. The designed vaccine construct included the AFP, GPC-3, and Aspartyl-β-hydroxylase (ASPH) as CytoLoxic T cell Lymphocytes (CTL), one epitope from Tetanus Toxin Fragment C (TTFrC) as Helper T cell Lymphocytes (HTL), and a segment of microbial heat shock protein (HSP70) peptide as an adjuvant. All the mentioned parts were connected by appropriate linkers. The aim of this study is the production of the designed vaccine.

Methods: This research is experimental and was carried out in Fasa, Iran, in 2017. The designed vaccine construct was transformed to the *E.coli* BL21 (DE3) strain and expressed in different Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations (0.6 and 1 mM), times (4, 6, 8, 16 hours), and temperatures (25 and 37 °C). Then, the expressed protein was analyzed by Sodium Dodecyl Sulfate-polyacrylamide (SDS) gel and the Western blot method.

Results: The best conditions for protein expression were obtained in the Super Optimal Broth (SOB) medium at 37 °C after the induction of expression by 1 mM IPTG for six hour.

Conclusion: The recombinant HCC vaccine was produced with a proper concentration.

Keywords • Electrophoresis • Polyacrylamide gel • Subunit • Blotting • Western

Introduction

Hepatocellular carcinoma (HCC) is the seventh most prevalent cancer in the world and the fourth leading cause of cancer mortality worldwide. Therapeutic choices against HCC are poor, and dependent on the cancer phase. For example, treatments like tumor resection and liver transplantation are effective for patients in the primary phase of HCC. However, the chance of surgical recurrence is approximately 70% in the first five years.1-2 Patients in the end stage of HCC are treated with chemotherapy and the drug Sorafenib, while only 10% of the patients survive more than
Expression a multi-epitope peptide vaccine against hepatocellular carcinoma

three years. Sorafenib is a multi-kinase inhibitor that improves patient rehabilitation. Therefore, an effective therapeutic method against HCC is required. In recent years, researchers have used three main approaches to stimulate the immune response against HCC, including adoptive immunotherapy, appropriate natural killer (NK) and cytokine-induced killer (CIK) cells, indirect immunological approaches like vaccines, and indirect non-immunological strategies such as the antigen-coding mRNA system. Vaccines, which belong to the indirect immunological strategies, are an effective strategy against tumor cells, and are generally divided into three types, including pulsed dendritic cells (DCs), peptide-based vaccines, and DNA-based vaccines. Peptide-based vaccines include tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and stimulate the adaptive immune response, which is considered as a beneficial approach for tumor immunotherapy. For designing an effective multi-epitope peptide vaccine, CTL and HTL epitopes are selected from TAAs or TSAs. In HCC, several antigens, including α-fetoprotein (AFP), glypican-3 (GPC-3), and aspartyl-β-hydroxylase (ASPH), are known as TAAs. Therefore, they are proper targets for the selection of CTL epitopes. AFP is known as a fetal liver protein, and about 80% of HCC patients have AFP in their blood serum, while the level of AFP is 1–3 ng/ml in healthy people. Thus, serum assessment plays an important function in the diagnosis and therapy of HCC. As mentioned, another TAA in HCC is GPC-3, which pertains to heparan sulfate proteoglycans, and plays a critical role in cell growth, survival, and development. GPC-3 is overexpressed in 50% of HCC cases, and not in healthy tissues, and hence, it is a perfect biomarker for the diagnosis of HCC. ASPH is an ideal TAA for HCC immunotherapy and is a transmembrane protein that belongs to the α-ketoglutarate-dependent dioxygenase family. This protein is over-expressed in HCC and infrequently detected in healthy adult tissues. Adjuvants are employed in the vaccine construct to effectively stimulate the immune response in the host, and additionally cause a reduced dose of vaccine injection. Heat shock proteins (HSPs) possess diverse functions in biological processes, such as protein folding and degradation, elimination of misfolded proteins, and protein transportation. Moreover, HSPs have a significant role in stimulating the innate and adaptive immunity, and additionally to providing antigen to T CD8+ cells via the major histocompatibility complex class I (MHC-I) pathway. Accordingly, HSP can serve as a powerful immunoadjuvant. In previous studies, two tandem repeats of microbial HSP70 peptide were used as an adjuvant, which improves DC maturation, induction of T CD8+, and T-cell helper 1 responses.

In this research paper, a novel multi-epitope peptide vaccine construct against HCC, which was designed by bioinformatics tools in our previous study, was cloned and expressed in E.coli host and then purified. The vaccine construct carries epitopes of AFP, GPC-3, and ASPH in the role of CTL epitopes, Tetanus Toxin Fragment C (TTFrC) as HTL epitopes, and two tandem repeats of HSP70 in the guise of a natural immune-adjuvant.

Materials and Methods

Host Strain and Culture Media

This experimental research was carried out at Fasa University of Medical Sciences, Iran, in 2017. The ethics committee approval code for this research is IR.FUMS.REC.1397.116.

E.coli BL21 (DE3) strain is a Gram-negative straight rod, and an acceptable organism to represent recombinant proteins. This strain can lead to high-yield protein expression, because it is under the control of the T7 promoter. In this study, E.coli BL21 (DE3) strain was applied for transformation. Furthermore, the pET-23d expression vector carries a C-terminal and N-terminal His Tag coding sequence, and possesses an ampicillin resistance marker. This vector was utilized for gene expression and Super Optimal Broth (SOB) medium, including 20 g/L trypton, 5 g/L yeast extract, 0.5 g/L NaCl, 2.5 ml 1 Molar Kcl, and 10 ml 1 Molar MgCl2 applied as media culture for protein expression.

Designed Vaccine Construct

Using bioinformatics tools, the design of a novel multi-epitope peptide vaccine against HCC was carried out. Several servers were used to increase the accuracy of the vaccine design, including IEDB at http://tools.immuneepitope.org/analyze/html/mhc_binding.html, ProPred-I at www.lmttech.res.in/raghava/propred1/, PACOMplex at http://PACOMplex.life.nctu.edu.tw, and BCPRED at http://
Transformation

E.coli BL21 (DE3) competent cells were prepared and plasmid vector pET-23d was transformed into competent cells using the Calcium Chloride method. The transformed cells were grown in a Laurie-broth (LB) (Miller-China) plate containing 100 µg/mL ampicillin (Jaberebn Hayyan, Iran) and incubated at 37 °C for 24 hours.

Expression of the Vaccine Protein

The culture media contained transformed E.coli incubated at 37 °C overnight. After that, 1 ml of the culture media was diluted in 5 ml of fresh culture in SOB media comprising of 100 µg/ml ampicillin (Jaberebn Hayyan, Iran) on the shaker incubator at 37 °C, and was shaken until an Optical Density (OD) was achieved at 600 nm of 0.6 after about five hours. Then, the media was induced via two different concentrations of Isopropyl β-D-1-thiogalactopyranoside (IPTG), including 0.6 and 1 mM, and optimized by several times, including 4, 6, 8, 16 hours, and two different temperatures (25 and 37 °C). Subsequently, the transformed cells were harvested via centrifugation at 10000 rpm for five minutes at room temperature, and the obtained pellets were stored at -20 °C for further research.

SDS-PAGE Analysis

The expression of the recombinant vaccine protein in several above mentioned conditions was measured with Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE), where 4 λ pellet (harvested in the previous step) was blended in 10 λ sample buffer and 6 λ DW, and heated at 95 °C for five minutes and centrifuged at 15000 rpm for 10 minutes at 4 °C. In the next step, an amount of 10 λ of the sample was loaded on SDS-PAGE gel (12%) (Bio-Rad-USA), and the power supply was run on 100-120 V for about two hours. Following that, the gel was stained with Coomassie Brilliant Blue (Biobasic-Canada) solution for about 16 hours, and then de-stained.

Purification of the Vaccine Protein

The purification of the recombinant protein was carried out using Ni-NTA affinity column chromatography (QIAGEN Company-Germany) following denaturing conditions. The bacterial pellets were solved in lysis buffer (pH=8, 7 M urea, 0.1 M NaH₂PO₄, 0.01 M Tris-cl) and shaken for about 20 minutes. In the next step, the cells were disrupted via ultrasonication (six-time six-second cycles at 4 °C). The suspension was centrifuged at 12000 ×g for 20 minutes at 4 °C, and the supernatant was decanted to the Ni-NTA column and centrifuged (two minutes at 890 ×g). The column was washed repeatedly via a wash buffer (pH=6.3, 8 M urea, 0.1 M NaH₂PO₄, 0.01 M Tris-cl) to remove the waste material. Finally, elution buffer (pH=4.5, 8 M urea, 0.1 M NaH₂PO₄, 0.01 M Tris-cl) was used, and the purified protein was evaluated by SDS-PAGE.

Western Blot Evaluation

To prove the expression and purification of the recombinant vaccine protein, the Western blot method was employed. This technique detached the proteins and transferred them onto a Polyvinylidene fluoride membrane (PVDF). In the next step, the PVDF paper was blocked with 5% skim milk for about 16 hours at 4 °C. Anti-his tag antibodies were inserted for two hours with agitation. Then, they were washed three times with tween 20 (0.1%) in phosphate-buffered saline (PBS). Finally, after adding a diaminobenzidine (DAB) solution (0.05%) with 30 µl hydrogen peroxidase (30%) for 20 sec, the purified protein became visible.

Results

Vaccine Construct and Transformation

The designed vaccine contains immunogenic epitopes against HCC cloned into a pET-23d expression vector, and the sequence was approved via DNA sequencing. The expression vector was transformed inside the competent E.coli/BL21 (DE3) strain, and then, transformed E. Coli was grown on LB agar containing 100 µg/ml ampicillin (figure 1).

Expression of the Vaccine Protein

The recombinant bacteria were cultured in SOB media containing 100 µg/ml ampicillin. Bacteria were grown to reach the OD of 0.6 at 600 nm, the bacterial growth rate over time is shown in table 1. Then, different IPTG concentrations (0.6 and 1 mM) were administrated in different conditions,
Expression a multi-epitope peptide vaccine against hepatocellular carcinoma

including several times (4, 6, 8, and 16 hours) and several temperatures (25 and 37 °C). The recombinant protein was verified in all mentioned conditions. The band of the vaccine protein was about 32.3 kDa, which was in accordance with the molecular weight of the designed construct as predicted by the bioinformatics tool. Furthermore, optimal protein expression was noticed in the SOB medium at 37 °C after expression induction by 1 mM IPTG for six hours. The results of the SDS-PAGE analysis are shown in figure 2.

Purification of the Protein
The recombinant protein has His-tag at the C- and N-terminal; therefore, purification was accomplished using Ni-NTA affinity column chromatography. The recombinant protein was purified by denaturing conditions and verified by SDS-PAGE (figure 3).

Western Blot Evaluation
The expression and purification of the designed multi-epitope peptide vaccine were evaluated by the Western blot analysis. As shown in figure 4, the purified protein was confirmed by the Western blot method.

Discussion
In this research, a novel multi-epitope peptide vaccine was expressed in a bacterial host (E.coli BL21 (DE3) strain) using SOB and LB culture media and purifying it for HCC immunotherapy. The purified peptide vaccine was confirmed by the SDS-PAGE and Western blot techniques, and based on the obtained results, the molecular
weight of the purified vaccine was 32.3 KDa.

HCC is the most prevalent type of cancer with a high mortality rate. This malignancy is not usually diagnosed in the primary stages, because it is known as a heterogeneous disorder that includes several etiological agents; therefore, it is diagnosed in the advanced stages, which is not useful for treatment. In the advanced stages, only Sorafenib and Regorafenib drugs are effective treatments for HCC, and other treatments, such as surgery, are not helpful. Thereby, effective treatment against HCC is needed. Recently, scientists have considered immunotherapeutic methods to treat HCC, and some of the clinical trials on HCC patients include cytokine relying therapies like interferons, cell-based trials like dendritic cell vaccines, antibody-based treatments like AFP antibodies, and antigen-specific vaccines like GPC-3 peptide-based vaccine. In particular, researchers have recently used multi-epitope peptide vaccines as a new immunotherapeutic approach against HCC. Various investigations have utilized bioinformatics tools to design beneficial multi-epitope peptide vaccines, and bioinformatics makes that process easier. Multi-epitope peptide vaccines possess some advantages over the others. They are detected and utilized by cytokine relying therapies like interferons, cell-based trials like dendritic cell vaccines, antibody-based treatments like AFP antibodies, and antigen-specific vaccines like GPC-3 peptide-based vaccine. In particular, researchers have recently used multi-epitope peptide vaccines as a new immunotherapeutic approach against HCC. Various investigations have utilized bioinformatics tools to design beneficial multi-epitope peptide vaccines, and bioinformatics makes that process easier. Multi-epitope peptide vaccines possess some advantages over the others. They are detected and utilized by cytokine relying therapies like interferons, cell-based trials like dendritic cell vaccines, antibody-based treatments like AFP antibodies, and antigen-specific vaccines like GPC-3 peptide-based vaccine.

In our previous study, a novel multi-epitope peptide vaccine was designed against HCC via bioinformatics tools. The designed vaccine has several CTL epitopes (AFP, GPC-3, and ASPH), HTL epitopes (TTFrC), and a powerful natural adjuvant (two tandem repeats of microbial HSP70 407–426 ). All (TTFrC), and a powerful natural adjuvant (two tandem repeats of microbial HSP70 407–426 ) are known as suitable targets for the design of peptide-based vaccines, and immunogenic epitopes were used in the vaccine construct instead of the whole antigens. In addition, we used two tandem repeats of microbial HSP70 407–426 as an adjuvant, which based on previous research, have the potential to stimulate humoral and cellular immune responses effectively. HSP70 leads to the production of IFN-γ and IgG2a, which are effective in the Th1 response.

In this study, to join CTL epitopes, the SSL linker and HEYGAEALERAG motifs were used as linkers. The HEYGAEALERAG linker is a cutting target for the proteasomal machine. Furthermore, HTL epitopes attached via KK linker and EAAAK linker were applied to connect the adjuvant, which is a rigid motif that leads to the increased stability and folding of the vaccine construct. The next step for the development of the multi-epitope peptide vaccine is the prosperous cloning and expression of the vaccine construct in the proper expression vector. In this research, we utilized the expression vector pET-23d, which is an accepted vector for the production of recombinant proteins in bacterial host E.coli. To find the optimal expression of the designed vaccine, the vaccine construct was expressed in different conditions, including various concentrations of IPTG (0.6, 1mM) at two different temperatures (25 and 37 °C) and four different times (4, 6, 8, and 24 hours). According to the SDS-PAGE results, the best
conditions for optimal protein expression were in the SOB medium at 37 °C after expression induction by 1 mM IPTG for six hours. The expression and purification of the designed vaccine protein were confirmed by SDS-PAGE and Western blot techniques, which showed a single band with 32.3 KDa molecular weight. Thus, based on the obtained results, we believe that the purified vaccine protein can stimulate humoral and cellular immunity against HCC patients effectively.

Although, based on the bioinformatics analysis, the produced vaccine has proper characterizations, such as high antigenicity and stability. However, in order to confirm these results, it is necessary to evaluate its immunogenicity in animal models.

Conclusion

In the present research, a novel multi-epitope peptide vaccine against HCC was produced. The multi-epitope construct vaccine contains CTL epitopes selected from AFP, GPC-3, and ASPH antigens, HTL epitopes from TTFrC, and an efficient natural adjuvant (HSP70), which were joined together by appropriate linkers. We obtained the best conditions for the vaccine construct expression in the SOB medium at 37 °C after expression induction by 1 mM IPTG for six hours. The purified protein displayed a band with a molecular weight of 32.3 KDa, which confirmed the desired protein. Hence, the purified peptide vaccine can potentially stimulate the immune system properly, although further in vitro and in vivo experimental investigations on the designed vaccine are truly necessary.

Acknowledgment

The authors wish to acknowledge the financial support received from Fasa University of Medical Sciences, Fasa, Fars, Iran, (grant number: 97075).

Conflict of Interest: None declared.

References


