Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Exercise Physiology, Lamerd Branch, Islamic Azad University, Lamerd, Iran

2 Department of Exercise Physiology, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran

Abstract

Background: Myocardial infarction causes mitochondrial atrophy and loss of function by reducing mitochondrial volume. Therefore, researchers are interested in finding a way to reduce the injuries and treat them. The study aims to evaluate the effect of 8 weeks of high-intensity interval training on follistatin (FST) gene expression in the fast and slow twitch muscles of rats with myocardial infarction. 
Methods: The study was conducted in 2020 at the Cardiac Research Center, Shahid Rajaei University of Medical Sciences (Tehran, Iran). For this purpose, 12 male Wistar rats with myocardial infarction were assigned to the experimental group high-intensity interval training (3 days a week for 30 min, each interval consisting of 4 min of running with 85-90% VO2max intensity and 2 min of active recovery with intensity of 50-60% VO2max for 8 weeks) and a control group. Then, the expression of follistatin in fast and slow twitch muscle contraction genes was investigated as triggers and inhibitors of muscle atrophy. Statistical data were analyzed with SPSS18 (α≥0.05). To determine the normality of the data, the Kolmogorov-Smirnov test was used, and in the case of normality of the data distribution, the independent samples t test was used.
Results: Independent t test results showed that FST gene expression in the slow twitch (ST) muscle contraction group was significantly decreased compared with the control group (P<0.001). Moreover, the expression of the FST gene in fast twitch muscles was significantly increased in the severe exercise group compared with the control group (P<0.001).
Conclusion: Overall, 8 weeks of intense intermittent exercise decreased FST gene expression in slow and fast twitch muscles in rats with myocardial infarction.

Keywords

  1. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020;12:e1462. doi: 10.1002/wsbm.1462. PubMed PMID: 31407867; PubMed Central PMCID: PMCPMC6916202.
  2. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016;23:1034-47. doi: 10.1016/j.cmet.2016.05.007. PubMed PMID: 27304505; PubMed Central PMCID: PMCPMC5045036.
  3. Sabbah HN. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci. 2020;5:88-106. doi: 10.1016/j.jacbts.2019.07.009. PubMed PMID: 32043022; PubMed Central PMCID: PMCPMC7000886.
  4. Castillero E, Akashi H, Wang C, Najjar M, Ji R, Kennel PJ, et al. Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy. Biochem Biophys Res Commun. 2015;457:106-11. doi: 10.1016/j.bbrc.2014.12.057. PubMed PMID: 25528587; PubMed Central PMCID: PMCPMC4967536.
  5. Han X, Moller LLV, De Groote E, Bojsen-Moller KN, Davey J, Henriquez-Olguin C, et al. Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle. J Cachexia Sarcopenia Muscle. 2019;10:1241-57. doi: 10.1002/jcsm.12474. PubMed PMID: 31402604; PubMed Central PMCID: PMCPMC7663972.
  6. Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016;433:87-93. doi: 10.1016/j.mce.2016.06.002. PubMed PMID: 27264073.
  7. Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, et al. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol. 2022;13:876078. doi: 10.3389/fphys.2022.876078. PubMed PMID: 35812316; PubMed Central PMCID: PMCPMC9259834.
  8. Parfenova OK, Kukes VG, Grishin DV. Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines. 2021;9. doi: 10.3390/biomedicines9080999. PubMed PMID: 34440203; PubMed Central PMCID: PMCPMC8391210.
  9. Papoti M, Manchado-Gobatto FB, Gobatto CA. Inter-effort recovery hypoxia: a new paradigm in sport science? BMJ Open Sport Exerc Med. 2023;9:e001520. doi: 10.1136/bmjsem-2022-001520. PubMed PMID: 37780131; PubMed Central PMCID: PMCPMC10533790.
  10. Santoso DIS, Boenyamin HA. The benefits and physiological changes of high intensity interval training. Universa Medicina. 2019;38:209-16. doi: 10.18051/UnivMed.2019.v38.209-216.
  11. Vieira JG, Sardeli AV, Dias MR, Filho JE, Campos Y, Sant’Ana L, et al. Effects of Resistance Training to Muscle Failure on Acute Fatigue: A Systematic Review and Meta-Analysis. Sports Med. 2022;52:1103-25. doi: 10.1007/s40279-021-01602-x. PubMed PMID: 34881412.
  12. Geneen LJ, Kinsella J, Zanotto T, Naish PF, Mercer TH. Resistance Exercise in People With Stage-3 Chronic Kidney Disease: Effects of Training Frequency (Weekly Volume) on Measures of Muscle Wasting and Function. Front Physiol. 2022;13:914508. doi: 10.3389/fphys.2022.914508. PubMed PMID: 35812321; PubMed Central PMCID: PMCPMC9263561.
  13. Khalafi M, Aria B, Symonds ME, Rosenkranz SK. The effects of resistance training on myostatin and follistatin in adults: A systematic review and meta-analysis. Physiol Behav. 2023;269:114272. doi: 10.1016/j.physbeh.2023.114272. PubMed PMID: 37328021.
  14. Taheri F, Fathi M, Hejazi K. The Effect of 10 Weeks Core Muscle Training on Levels of Follistatin, Myostatin, and Pain in Elderly Women. Internal Medicine Today. 2021;27:164-81. doi: 10.32598/hms.27.2.1970.12.
  15. Rashidlamir A, Attarzadeh Hosseini SR, Hejazi K, Motevalli Anberani SM. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats. J Cardiovasc Thorac Res. 2016;8:164-9. doi: 10.15171/jcvtr.2016.33. PubMed PMID: 28210472; PubMed Central PMCID: PMCPMC5304099.
  16. Sepulveda PV, Lamon S, Hagg A, Thomson RE, Winbanks CE, Qian H, et al. Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep. 2015;5:17535. doi: 10.1038/srep17535. PubMed PMID: 26657343; PubMed Central PMCID: PMCPMC4675991.
  17. Rostami M, Gaeini A, Kordi M. The difference of myostatin gene expression in fast and slow twitch healthy male rat after eight weeks of high intensity interval training. Physiology of Sport and Physical Activity. 2016;9:1301-6. Persian.
  18. Biglari S, Gaeini AA, Kordi MR, Ghardashi Afousi A. The effect of 8 weeks high-intensity interval training on myostatin and follistatin gene expression in gastrocnemius muscle of the rats. Journal of Arak University of Medical Sciences. 2018;21:1-10.
  19. Kraljevic J, Marinovic J, Pravdic D, Zubin P, Dujic Z, Wisloff U, et al. Aerobic interval training attenuates remodelling and mitochondrial dysfunction in the post-infarction failing rat heart. Cardiovasc Res. 2013;99:55-64. doi: 10.1093/cvr/cvt080. PubMed PMID: 23554460.
  20. Li A, Liang L, Liang P, Hu Y, Xu C, Hu X, et al. Assessment of renal fibrosis in a rat model of unilateral ureteral obstruction with diffusion kurtosis imaging: Comparison with alpha-SMA expression and (18)F-FDG PET. Magn Reson Imaging. 2020;66:176-84. doi: 10.1016/j.mri.2019.08.035. PubMed PMID: 31484043.
  21. Verzola D, Barisione C, Picciotto D, Garibotto G, Koppe L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019;95:506-17. doi: 10.1016/j.kint.2018.10.010. PubMed PMID: 30598193.
  22. Geladari E, Alexopoulos T, Kontogianni MD, Vasilieva L, Mani I, Alexopoulou A. Mechanisms of sarcopenia in liver cirrhosis and the role of myokines. Ann Gastroenterol. 2023;36:392-404. doi: 10.20524/aog.2023.0804. PubMed PMID: 37396001; PubMed Central PMCID: PMCPMC10304523.
  23. Hu S, Liu H, Hu Z, Li L, Yang Y. Follistatin-like 1: A dual regulator that promotes cardiomyocyte proliferation and fibrosis. J Cell Physiol. 2020;235:5893-902. doi: 10.1002/jcp.29588. PubMed PMID: 32017077.
  24. Lin YA, Li YR, Chang YC, Hsu MC, Chen ST. Activation of IGF-1 pathway and suppression of atrophy related genes are involved in Epimedium extract (icariin) promoted C2C12 myotube hypertrophy. Sci Rep. 2021;11:10790. doi: 10.1038/s41598-021-89039-0. PubMed PMID: 34031457; PubMed Central PMCID: PMCPMC8144409.
  25. Ghafari M, Banitalebi E, Faramarzi M, Mohebi A. Comparison of two intensities of aerobic training (low intensity and high intensity) on expression of perlipin 2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats. Armaghane danesh. 2017;22:282-94.
  26. Song H, Dang X, He YQ, Zhang T, Wang HY. Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (Rapana venosa). PeerJ. 2017;5:e3398. doi: 10.7717/peerj.3398. PubMed PMID: 28584723; PubMed Central PMCID: PMCPMC5455708.
  27. Aithal MG, Rajeswari N. Validation of housekeeping genes for gene expression analysis in glioblastoma using quantitative real-time polymerase chain reaction. Brain Tumor Res Treat. 2015;3:24-9. doi: 10.14791/btrt.2015.3.1.24. PubMed PMID: 25977903; PubMed Central PMCID: PMCPMC4426273.
  28. Yang W, Wang A, Liu F, Yu Y, Qiao G, Nie Q, et al. Peroxisome proliferator-activated receptor alpha (pparα) in redlip mullet, Liza haematocheila: molecular cloning, mrna tissue expression, and response to dietary lipid levels. Turkish Journal of Fisheries and Aquatic Sciences. 2017;17:689-99. doi: 10.4194/1303-2712-v17_4_05.
  29. Cheng CF, Ku HC, Lin H. PGC-1alpha as a Pivotal Factor in Lipid and Metabolic Regulation. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19113447. PubMed PMID: 30400212; PubMed Central PMCID: PMCPMC6274980.
  30. Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med. 2023;28:e17931. doi: 10.1111/jcmm.17931. PubMed PMID: 37700501; PubMed Central PMCID: PMCPMC10902584.
  31. Suh J, Lee YS. Myostatin Inhibitors: Panacea or Predicament for Musculoskeletal Disorders? J Bone Metab. 2020;27:151-65. doi: 10.11005/jbm.2020.27.3.151. PubMed PMID: 32911580; PubMed Central PMCID: PMCPMC7571243.