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Abstract
Background: Alcohol consumption in pregnancy is associated 
with an increased risk of cardiovascular abnormalities, but the 
mechanisms are unknown. This study evaluated the impact of 
ethanol exposure on the offspring’s aorta structural, functional, and 
molecular alterations on postnatal (PN) both on days 21 and 90.
Methods: This experimental study was conducted at Urmia 
University of Medical Sciences (Urmia, Iran) in 2019. Twenty 
Pregnant Wistar rats on the seventh day of Gestation Day (GD) 
were randomly divided into two groups: control and ethanol-
treated groups (n=10 per group). From the seventh day of 
GD throughout lactation, rats in the ethanol group were fed 
binge alcohol (4.5 g/Kg body weight) once daily. Systemic 
hemodynamic variables in the offspring were analyzed using 
waveform contour analysis 90 days after birth. On postnatal 
days (PN) 21 and 90, aorta wall histological alterations and 
the level of inflammatory factors were assessed in the aorta of 
male offspring. The statistical differences were examined via 
an independent samples t test. P<0.05 was considered to be 
statistically significant. 
Results: The results revealed that offspring in the ethanol group 
had higher systolic, diastolic, mean arterial pressure, and dicrotic 
pressure than the control group (P<0.001). The level of aorta 
tissue tumor necrosis factor (TNF)-α, intercellular adhesion 
molecule (ICAM)-1, nuclear factor (NF)-κ, and endothelin-1 
were significantly higher in the ethanol offspring group than 
in the control group (P<0.001). Histopathological changes 
such as total aorta thickness, tunica media, tunica adventitia, 
elastin fiber thickness, fiber interval, and elastin/media ratio 
significantly increased in the aorta of the offspring of the ethanol 
group compared to the control group 21 and 90 days after birth. 
Conclusion: Our findings suggest that prenatal and early 
postnatal ethanol exposure-induced cardiovascular abnormalities 
are, in part, due to predisposing the aorta to atherosclerosis, 
which was mediated through the aorta wall remodeling and 
inflammation process. 
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What’s Known

• In animal models, fetal alcohol 
exposure was found to cause various 
heart and vascular abnormalities, 
including heart cell proliferation, increased 
arterial stiffness, and impaired vascular 
vasodilation function.
•  Furthermore, studies found that long-
term ethanol exposure in pregnant rats 
resulted in an increase in mean arterial 
pressure in offspring at six months of age.

What’s New

• Maternal ethanol exposure causes 
aorta wall remodeling on post-natal days 
21 and 90.
• Ethanol causes an increase in 
inflammatory mediators in aorta tissue, 
as well as a change in hemodynamic 
variables, on post-natal days 21 and 90.
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Introduction

Alcohol consumption during pregnancy is 
associated with a number of fatal adverse effects, 
including premature birth, intrauterine growth 
restriction, craniofacial deficits, and central 
nervous system dysfunction, collectively named 
fetal alcohol spectrum disorders (FASD).1, 2 As 
the neurodevelopmental disorders induced by 
maternal alcohol consumption are visible and have 
obvious manifestations, early studies on FASD in 
terms of neurodevelopmental and craniofacial 
deficits have received much attention. Over the 
last two decades, researchers have focused on 
the impact of maternal ethanol consumption on 
cardiovascular system abnormalities, particularly 
in response to binge drinking.3, 4 Fetal alcohol 
exposure was found to induce some measures 
of heart and vascular abnormalities such as heart 
cell proliferation, increased arterial stiffening, 
and altered vascular vasodilation function.4, 5 
Turcott and others also reported that long-term 
ethanol exposure in pregnant rats increased 
the mean arterial pressure and impaired the 
aortic endothelium-dependent relaxation in the 
offspring at six months of age.6 Cardiovascular 
malformation and vascular stiffness have also 
been reported in children exposed to ethanol 
during the gestation period.7, 8 Our laboratory 
recently found that ethanol exposure during 
pregnancy and lactation caused cardiac structural 
and biochemical changes, hippocampus defects, 
and testis abnormalities in the rats’ offspring 21 
and 90 days after birth.5, 9, 10 These studies provide 
evidence that chronic ethanol exposure during 
cardiovascular system development predisposes 
the adult offspring to a risk of cardiovascular 
dysfunction. 

The purpose of this study was to explore 
the effect of maternal ethanol ingestion on the 
aorta of male rat offspring in terms of functional 
histological and molecular endpoints at days 21 
and 90 after birth. 

Materials and Methods

Experimental Procedure
This experimental study was conducted at 

Urmia University of Medical Sciences (Urmia, Iran) 
in 2019. The study protocol was approved by the 
Ethics Committee of Urmia University of Medical 
Sciences (code: IR.UMSU.RES.1398.129). The 
animal care and experimental procedures were 
performed according to the national guidelines, in 
accordance with the National Institute of Health 
Guide for the Care and Use of Laboratory Animals. 

Twenty pregnant date-mated rats were 
housed separately and assigned to two groups: 

alcohol and control.5 From Gestation Day (GD) 
seven to postnatal day (PN) 21(lactation period), 
the rats in the alcohol group were given ethanol 
at a dose of 4.5 g/Kg body weight (Merck KGaA, 
Darmstadt, Germany) diluted with distilled water 
(20% w/v) intragastrically by gavage once a 
day. Due to the impact of sex differences on 
response to ethanol, only male pups were used 
in this study. During the weaning period, the 
pups (control and ethanol-exposed) had free 
access to nipples.  Ketamine (Alfasan, Holland; 
10%, 80 mg/Kg B.W, IP) and xylazine (Alfasan, 
Holland; 2%, 10 mg/Kg B.W, IP) were used to 
anesthetize the offspring from each group on 
PN21 and PN90 (n=8 offspring from each group 
PN21 and PN90).

Blood Pressure and Hypertension 
Systemic hemodynamic variables and heart 

rates were determined using a physiograph and 
a digital waveform contour analysis method 
directly recorded from the carotid artery 
(NARCO, Bio-system, USA). The detail of the 
protocol were outlined in our previous work.11 
Power Lab Software (ADInstruments, Australia) 
was used to analyze the data, i.e., the recorded 
digital volume pulse.

Tissue Sampling
After blood pressure measurement (only in 

PN90 pups), the thoracic cavity was opened, 
and the aorta was dissected from the root to the 
abdomen descending section. The harvested 
aorta was washed and cleansed to remove any 
adventitial tissues, fat, and blood clots.

For histological analysis, formalin was used 
to fix aorta samples. After the dehydration steps, 
the samples were embedded in paraffin and 
sectioned at 5 µm for histological evaluation. In 
order to assess the histopathological alterations, 
eight slides per group and four non-overlapping 
fields of view per section from two to three 
sections per animal were analyzed. 

For biochemical analysis, the remaining 
half of the aorta was rinsed with ice-cold 
normal saline and wiped with filter papers for 
biochemical analysis. After, mixing with an ice-
cold extraction buffer (10% wt/Vol) including 
a 50 mM phosphate buffer (pH 7.4), Ultra 
Turrax (T10B, IKA, Germany) was used for 
homogenizing the samples. The products were 
then centrifuged at 10,000 ×g at 4 °C for 20 
minutes, and the supernatant was frozen at -80 °C  
for further analysis.

Histopathological Assessment
Sections of the aorta were stained 

with Masson trichrome according to the 
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manufacturer’s instruction (Asiapajohesh, Amol, 
Iran). The intensity of aorta fibrosis in different 
groups was assessed using a semi-quantitative 
method described by Ashcroft and others.12 
They applied criteria for scoring fibrosis intensity 
as 0=normal aorta tunica media, 1=minimal 
fibrosis thickening of the aorta tunica media, 
2 and 3=moderate thickening of aorta tunica 
media without obvious damage to the structure 
of the aorta tissue, 4 and 5=increased fibrosis 
with definite damage to the architecture of the 
aorta and formation of fibrosis bands or small 
fibrosis masses, 6 and 7=severe distortion of the 
structure and large fibrosis areas, and 8=total 
fibrotic obliteration.

After preparing the tissue sections, Verhoeff’s 
van Gieson and Periodic Acid-Schiff staining 
were used to detect elastin bands. To assess 
the atherosclerotic features, eight sections of 
the aorta from different experimental groups 
were used. Herein, the total aorta thickness, 
tunica media, tunica adventitia, smooth muscle 
cell layers’ width, and elastic fiber thickness 
were measured using a linear scale-ocular 
micrometer with a 2.5 mm interval between 
divisions under x400 magnification with a digital 
camera equipped with a research microscope 
(Olympus, CX 31, Japan). 

Biochemical Examinations
The levels of TNF-α, ICAM-1, NF-κB, 

and endothelin-1 in the aorta tissue were 
analyzed using the quantitative sandwich 
enzyme immunoassay method, commercial 
rat TNF-α, ICAM-1, endothelin-1, and NF-κB 
(Shanghaicrystal Day, Biotech, China) kits, 
according to the manufacturer’s instruction.

Statistical Analysis
The normal distribution of the data within each 

group was verified through the Kolmogorov–
Smirnov test using SPSS software (version 17.0; 
SPSS Inc, Chicago, IL, USA). In addition, the 
statistical differences between the control and 
ethanol groups were tested through an independent 
samples t test. The data obtained from each test 
were presented as mean±SEM, and P<0.05 was 
considered to be statistically significant. 

Results

Aorta Wall Cytokines and Chemokine Changes
The changes in inflammatory cytokines 

and chemokine levels in the offspring of the 
experimental groups are presented in table 1. 
Pre- and early postnatal animals exposed to 
ethanol showed significantly higher levels of pup 
aorta tissue, TNF-α, and NF-κB on both PN21 
and PN 90, when compared with control pups of 
the same age groups (P<0.001). As compared 
to the control group, ICAM-1 level in the ethanol-
treated groups showed a significant increase in 
the aorta wall of liters in both PN21 and PN90 
(P<0.001). On PN90, the Endothelin-1 level was 
significantly higher in the aorta tissue of pups 
from the ethanol group than in the control group 
(P<0.001). 

Aorta Wall Thickness Changes 
The data regarding the aorta wall elastin 

layers’ changes in litters is summarized in table 2  
and figure 1. As compared to the control pups of the 
same age groups, the total aorta wall thickness in 
dams exposed to ethanol increased significantly 
on both PN21 and PN90 (P<0.001). On PN21, 
tunica media and tunica adventitia thickness 
increased significantly in the aorta of the ethanol 
group compared to the control group (P<0.001). On 
PN90, tunica media showed a significant increase 
compared to the control group (P<0.001), but 
there were no significant differences regarding the 
tunica adventitia thickness changes between the 
ethanol and control groups (P=0.37). The elastin 
fiber thickness and entire elastin thickness were 
significantly increased in the aorta of the ethanol-
treated litters compared to the control group on 
both PN21 and PN90, P=0.044, and P=0.015, 
respectively. On PN90, the ethanol group had a  
significantly higher elastin fiber interval than the 
control group (P=0.014). There was no significant 
difference between the ethanol and control groups 
in the elastin fiber interval (P=0.55), on PN21. 
The smooth muscle cells thickness on PN90 
was significantly greater than in the control group 
(P<0.001). In the aorta of the ethanol-treated 
group, the elastin/media ratio was significantly 
higher than the control group on PN21 (P=0.011). 

Table 1: Ethanol exposure-induced alteration of tumor necrosis factor-α, intercellular adhesion molecule -1, nuclear factor-κ and 
Endothelin amounts in the aorta tissue of male offspring on postnatal days 21 and 90

Groups
Variable

Control 21
(n=8)

Ethanol 21
(n=8)

P value Control 90
(n=8)

Ethanol 90
(n=8)

P value

TNF-α (ng/mg) 152.62±7.4 518.73±11.8* <0.001 170.30±5 664.84±17.60* <0.001
ICAM-1 (ng/mg) 0.75±0.02 0.86±0.04* 0.03 0.28±0.03 0.52±0.030* <0.001
NF-κB (ng/mg) 32.01±3.27 56.9±4.6* 0.005 22.57±2.20 49.80±2.10* <0.001
Endothelin-1 (ng/mg) - - - 48.40±3.30 79.33±2.85* <0.001
The statistical differences between the control and ethanol groups were tested via an independent samples t test. Values 
expressed as mean±SEM. *Significant difference from the control group.
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On PN90, there were no significant differences in 
the elastin/media ratio between the ethanol and 
control groups (P=0.31). On PN21 and PN90, the 
media/aorta ratio in ethanol-exposed groups was 
significantly higher than that of the control groups 
(P<0.001). 

Aorta Wall Collagen Changes 
Masson’s trichrome staining results revealed 

no lesion score in the aorta media of the control 
group on PN21 and PN90, as well as the 

ethanol group on PN21 (grade=0). On PN90, the 
microscopic lesion scores in the tunica media 
of the aorta were 2 and 3, indicating moderate 
thickening of aorta tunica media without obvious 
damage to the aorta tissue structure. Tunica 
adventitia of the aorta was normally composed 
of collagen and fibrosis, which was visible in both 
the control and ethanol-treated groups. Ethanol-
treated groups indicated a significant increase in 
fibrosis layer thickness on both PN21 and PN90, 
compared to the controls (figure 2). 

Table 2: effect of prenatal and early postnatal ethanol consumption on data related to aorta wall of control and ethanol groups 
in postnatal days 21 and 90
Groups Control 21 Ethanol 21 P value Control 90 Ethanol 90 P value
Total Aorta thickness (µm) 117±5.61 228±38.31* 0.014 167±5 260±14* <0.001
Tunica Media (µm) 93±4.70 119±15.56* 0.05 83.50±4.3 188±8.1* <0.001
Tunica Adventitia (µm) 22.90±1.10 56.8±6* <0.001 83.50±7.3 70.40±11.9 0.37
Elastin Fiber Thickness (µm) 2.52±0.02 4±0.25* 0.044 3.62±0.12 6.25±0.79* 0.015
Fiber Interval 5.62±0.22 5.25±0.61 0.55 7±0.3 10.25±1* 0.014
Entire elastin thickness (µm) 26.63±0.82 37.50±3.4* <0.001 32.62±1.98 65±9.21* 0.004
Elastin/Media 28.25±1.13 37.41±2.84* 0.011 39.23±1.66 44.09±4.6 0.315
Entire SMC thickness (µm) 52.77±1.86 51.25±4.14 0.73 46.75±4.1 90.93±1.86* <0.001
Media/Aorta 80.04±1.38% 59.01±3.55*% <0.001 50.57±2.7% 72.73±2.89*% <0.001
SMC/EFT 1.95±0.12 1.38±0.16* 0.021 1.56±0.11 1.53±0.12 0.86
SMC/Media 51.40±2.8 54.98±7.01 0.64 57.95±4.32 53.58±2.58 0.43
The statistical differences between the control and ethanol groups were tested via an independent samples t test. Values 
expressed as mean±SEM. *Significant difference from the control group

Figure 1: The ethanol-treated group showed an increase in total aorta thickness, tunica media, tunica adventitia, elastin fiber 
thickness, fiber interval, and elastin/media ratio compared to the controls on PN21 and PN90 (Verhoeff’s van Gieson). Arrows 
show elastin layer thickness in different groups (×400).
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Blood Pressure
The digital waveform contour analysis method 

was used to analyze systemic hemodynamic 
variables and heart rates in PN90 pups, and 
the results are reported in table 3. Heart rates 
did not differ significantly between the ethanol-
treated and control groups (P=0.67). On PN90, 
the ethanol-treated pups had significantly higher 
systolic, diastolic, and mean arterial blood 
pressures than the control pups (P<0.001). When 
compared to the control group, dicrotic notch 
pressure and pulse pressure were increased 
significantly in the ethanol group (P=0.05). 

Discussion

The findings of the present study provide several 
lines of evidence such as increased aorta wall 

thickness, high blood pressure, and increased 
inflammatory cytokines, including TNF-α, ICAM-1,  
NF-κB, and endothelin levels in the aorta tissue of 
the offspring exposed to ethanol during pregnancy 
and early postnatal period 90 days after birth. 
All the measurements performed herein were 
known as possible risk factors for cardiovascular 
abnormalities, which also predispose the aorta 
wall to atherosclerosis. Previous studies on 
the effect of ethanol feeding during pregnancy 
on offspring blood pressure variables reported 
ambiguous results. Several studies found that 
mothers’ ethanol exposure during the gestation 
period led to a significant increase in systolic, 
diastolic, and mean arterial pressure in their 
offspring, which is consistent with the findings of 
the current study.6, 13, 14 Other studies on animal 
models or on offspring of mothers who consumed 

Figure 2: The arrows show the collagen accumulation in the intima region of the PN 90 ethanol treated rats, which appeared in 
blue color (Masson trichrome, ×400).

Table 3: effect of pre and early postnatal exposure of mothers on blood pressure variables in male offspring of rats
Groups

Variable
Control 90 (n=8)
mean±SEM

Ethanol 90 (n=8)
mean±SEM

P value

Heart rate (beat/min) 266.72±5.08 271.25±8 0.67
Psys (mmHg) 98.67±2.1 142.86±4.2* <0.001
Pdias (mmHg) 87.60±2.6 114±5.2* <0.001
M.A.P (mmHg) 91.42±2 121.20±4.7* <0.001
Dicrotic. Pressure (mmHg) 94.37±1.7 127.15±4.7* <0.001
Pulse. Pressure (mmHg) 12.18±1.29 29.74±6.1* 0.48
The statistical differences between the control and ethanol groups were tested via an independent samples t test. *Significant 
difference from the control group.
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alcohol during pregnancy found that ethanol 
consumption during gestation had no effect on 
blood pressure variables.8, 15 The discrepancy 
between these studies and our findings could 
be attributed to technical differences in blood 
pressure measurement methods. Previous 
studies obtained blood pressure-related 
variables using tail-cuff methods in animal studies 
and brachial artery-cuff methods in human 
studies, while we employed contour analysis of 
hemodynamic variables using carotid arterial 
cannulation. Although this method is aggressive, 
the results are more informative and reliable than 
traditional methods such as tail-cuff methods.16, 17 

In our study, in addition to a significant rise 
in systolic, diastolic, and mean arterial pressure, 
there was a significant increase in dicrotic or 
reflected pressure in pups obtained from the 
ethanol group 90 days after birth. The height 
of the dichroic notch indicates reduced nitric 
oxide (NO) production, which leads to aorta 
wall stiffness. It acts as a strong vasodilator 
contributing to vessel diameters, tone, 
resistance, and compliance of vasculature.18 Two 
reviews of pulse waves in human fingers and 
rabbit auricular arteries revealed that changes in 
the NO pathway were associated with variations 
in the relative height of the dichroic notch.18, 19 

In addition to an increase in dicrotic pressure, 
the current study found a parallel significant 
increase in total aorta thickness, tunica media 
thickness, elastin fiber thickness, elastin fiber 
interval, and the media/aorta ratio in the ethanol 
group compared to the control animals. We also 
found significant collagen deposition (grade 2, 3) 
in the elastin fiber interval and a fibrosis score of 
grade 4-5 in the adventitia of the ethanol group, 
indicating severe adventitia thickening. It has 
been reported that elevated collagen deposition 
and elastin fraction in the artery wall increased 
arterial stiffness.20

Recently, arterial stiffness has been proposed 
as an independent predictor of cardiovascular 
diseases, such as increased pulse pressure/
hypertension, left ventricular dysfunction/
hypertrophy, and myocardial ischemia/increased 
metabolic demands.20-22

It’s worth noting that aortic media thickens is 
responsible for better tension distribution across 
the aortic wall, and thus its thickness is considered 
an index of generalized atherosclerosis.23, 24 

From a histological viewpoint, the media is 
formed by elastin fibers, and the fiber interval 
mainly includes smooth muscle cells and 
extracellular matrix proteins. In contrast to 
the control group, both of these components 
were significantly elevated in the ethanol 
group. Previously, ethanol consumption during 

gestation-induced cardiovascular anomalies 
was shown to prevent normal cardiogenesis in 
FAS animal models through various molecular 
mechanisms, including retinoic acid signaling 
pathway, sonic hedgehog signaling, and Wnt/β-
catenin signaling pathway.25-27 

While acknowledging the previous works, 
we proposed in this study that inflammatory 
cytokines, which are key molecular mediators 
in atherosclerosis, may contribute to ethanol-
induced aorta abnormalities in pups. Hence, 
since atherosclerosis is now recognized as 
a chronic inflammatory condition, alcohol 
consumption is clearly associated with a higher 
risk of atherosclerosis. On both PN21 and PN90, 
the level of NF-κB in the ethanol-treated groups 
was significantly higher than in the control 
groups. The transcriptional factor of the nuclear 
factor kappa B signaling pathway in the vascular 
endothelial cells is responsible for numerous gene 
expressions involved in inflammation, immune 
responses, cell growth, and adhesion molecules 
such as ICAM-1, vascular adhesion molecule 
(VCAM)-1, TNF-α, IL-6, and beta-selectin on the 
cell surface.28, 29 In addition, numerous genes 
expressed by the NF-κB pathway may be related 
to atherosclerosis plaque formation. 

TNF-α has also been shown to directly activate 
NF-κB, inducing an inflammatory response.30 
Although TNF-α elevation is secondary to NF-κB 
or vice versa, our study found a significant 
increase in TNF-α and ICAM-1 in the aorta 
tissue of litters. Numerous studies have shown 
that TNF-α promoted the generation of reactive 
oxygen species (ROS) in the endothelial cell 
through the activation of NADPH oxidase.30-32 

ROS generation and the subsequent TNF-
activation seem to act as a second messenger, 
regulating the expression of adhesive molecules 
such as VCAM-1 and ICAM-1.32 Moreover, 
TNF-α, as a putative inflammatory cytokine, 
may contribute to the development and 
progression of atherosclerosis by facilitating 
the transcytosis of low density lipoprotein (LDL) 
across endothelial cells and the retention of 
LDL in the vascular wall.33 In the current study, 
we found that ethanol significantly increased 
endothelin-1 level in the aorta tissue of rats. 
Endothelin-1 is primarily secreted by endothelial 
cells and plays a major role in the maintenance 
of basal vascular tone and vessel constriction. 
In addition, a study reported that endothelin-1 
had mitogenic properties on vascular smooth 
muscle cells and stimulated the proliferation of 
coronary vascular smooth muscle cells. This 
effect of endothelin-1 has been observed in 
atherosclerotic coronary plaques and may be 
associated with atherosclerosis.34 
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The current research had several 
limitations. Although evidence of LV 
dysfunction, such as decreased ejection 
fraction, is fairly straightforward to detect in 
rodents by echocardiography, we didn’t use 
echocardiography in this study. This study 
focused only on the phenotypic effects of 
maternal alcohol consumption on the aorta 
of the offspring, with little attention paid to the 
mechanisms that could explain the phenotype.

Conclusion

Taking these findings together, we concluded 
that daily maternal alcohol consumption during 
gestation and in the early postnatal period induced 
aorta wall remodeling in the offspring, which 
manifested itself as increased aorta wall stiffness 
and hypertension even 90 days after birth. In 
addition, the elevation of vascular biomarkers 
of inflammation and atherosclerosis revealed 
a more significant and stronger association 
between maternal ethanol consumption-induced 
aorta structure changes through inflammatory 
stress. These findings suggest that maladaptive 
alterations in the fetal aorta in response to 
ethanol exposure during gestation may persist 
postnatally and increase the risk of cardiovascular 
abnormalities in adulthood. 
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