Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Anatomy and Reproductive Biology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Isfahan, Iran

4 Isfahan Fertility and Infertility Center, Isfahan, Iran

5 Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

6 Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

7 Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

8 Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/ijms.2023.99512.3168

Abstract

Background: Ovarian granulosa cells (GCs) are essential for follicular development. Ovarian advanced glycation end-products (AGEs) accumulation is related to GCs dysfunction. Alpha-lipoic acid (ALA) illustrates therapeutic capabilities for infertility-related disorders. Therefore, this study assessed the effects of ALA on AGEs-induced GCs hormonal dysfunction.
Methods: The study was conducted from October 2021 to September 2022 at the Department of Medical Genetics, Shiraz University of Medical Sciences. Isolated GCs (n=50) were divided into control, human glycated albumin (HGA), HGA+ALA, and ALA treatments. Steroidogenic enzymes and AGE receptor (RAGE) genes were assessed by qRT-PCR. Steroid hormones and RAGE protein were evaluated using ELISA and Western blotting. Data were analyzed using GraphPad Prism software (ver. 9), and P<0.05 was considered significant.
Results: Our findings showed that HGA treatment significantly (P=0.0001) increased RAGE (by 140.66%), STAR (by 117.65%), 3β-HSD (by 165.68%), and 17β-HSD (by 122.15%) expression, while it decreased CYP19A1 (by 68.37%) expression. RAGE protein level (by 267.10%) was also increased in HGA-treated GCs. A significant decrease in estradiol (by 59.66%) and a slight and sharp elevation in progesterone (by 30.40%) and total testosterone (by 158.24%) levels was also observed. ALA treatment ameliorated the HGA-induced changes in steroidogenic enzyme mRNA levels (P=0.001) and steroid hormone secretion (P=0.010).
Conclusion: This work shows that ALA therapy likely corrects hormonal dysfunctions caused by AGEs in luteinized GCs. This effect is probably achieved by decreased RAGE expression. Clinical research is needed to understand how AGEs and ALA interact in the ovary, which might lead to a more targeted ovarian dysfunction therapy.

Keywords

  1. Masjedi F, Keshtgar S, Zal F, Talaei-Khozani T, Sameti S, Fallahi S, et al. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J Steroid Biochem Mol Biol. 2020;197:105521. doi: 10.1016/j.jsbmb.2019.105521. PubMed PMID: 31705961.
  2. Mirani M, Bahmanpour S, Masjedi F, Derakhshan Z, Dara M, Nasr-Esfahani MH, et al. Pyridoxamine protects human granulosa cells against advanced glycation end-products-induced steroidogenesis disturbances. Mol Biol Rep. 2023;50:8537-49. doi: 10.1007/s11033-023-08723-8. PubMed PMID: 37642758.
  3. Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018;24:1-14. doi: 10.1093/humupd/dmx029. PubMed PMID: 29029246.
  4. Wu RX, Dong YY, Yang PW, Wang L, Deng YH, Zhang HW, et al. CD36- and obesity-associated granulosa cells dysfunction. Reprod Fertil Dev. 2019;31:993-1001. doi: 10.1071/RD18292. PubMed PMID: 30832758.
  5. Li Y, Li R, Ouyang N, Dai K, Yuan P, Zheng L, et al. Investigating the impact of local inflammation on granulosa cells and follicular development in women with ovarian endometriosis. Fertil Steril. 2019;112:882-91. doi: 10.1016/j.fertnstert.2019.07.007. PubMed PMID: 31551156.
  6. Qu F, Wang FF, Yin R, Ding GL, El-Prince M, Gao Q, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012;90:911-23. doi: 10.1007/s00109-012-0881-4. PubMed PMID: 22349439.
  7. Chang AS, Dale AN, Moley KH. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology. 2005;146:2445-53. doi: 10.1210/en.2004-1472. PubMed PMID: 15718275.
  8. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients. 2010;2:1247-65. doi: 10.3390/nu2121247. PubMed PMID: 22254007; PubMed Central PMCID: PMCPMC3257625.
  9. Merhi Z. Advanced glycation end products and their relevance in female reproduction. Hum Reprod. 2014;29:135-45. doi: 10.1093/humrep/det383. PubMed PMID: 24173721.
  10. Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, et al. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol. 2007;127:581-9. doi: 10.1007/s00418-006-0265-3. PubMed PMID: 17205306.
  11. Diamanti-Kandarakis E, Katsikis I, Piperi C, Kandaraki E, Piouka A, Papavassiliou AG, et al. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2008;69:634-41. doi: 10.1111/j.1365-2265.2008.03247.x. PubMed PMID: 18363886.
  12. Thornton K, Merhi Z, Jindal S, Goldsammler M, Charron MJ, Buyuk E. Dietary Advanced Glycation End Products (AGEs) could alter ovarian function in mice. Mol Cell Endocrinol. 2020;510:110826. doi: 10.1016/j.mce.2020.110826. PubMed PMID: 32339649.
  13. Nejabati HR, Mota A, Farzadi L, Ghojazadeh M, Fattahi A, Hamdi K, et al. Follicular fluid PlGF/sFlt-1 ratio and soluble receptor for advanced glycation end-products correlate with ovarian sensitivity index in women undergoing A.R.T. J Endocrinol Invest. 2017;40:207-15. doi: 10.1007/s40618-016-0550-5. PubMed PMID: 27664102.
  14. Azhary JMK, Harada M, Kunitomi C, Kusamoto A, Takahashi N, Nose E, et al. Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS. Endocrinology. 2020;161. doi: 10.1210/endocr/bqaa015. PubMed PMID: 32020188.
  15. Diamanti-Kandarakis E, Chatzigeorgiou A, Papageorgiou E, Koundouras D, Koutsilieris M. Advanced glycation end-products and insulin signaling in granulosa cells. Exp Biol Med (Maywood). 2016;241:1438-45. doi: 10.1177/1535370215584937. PubMed PMID: 25956684; PubMed Central PMCID: PMCPMC4994916.
  16. Merhi Z, Buyuk E, Cipolla MJ. Advanced glycation end products alter steroidogenic gene expression by granulosa cells: an effect partially reversible by vitamin D. Mol Hum Reprod. 2018;24:318-26. doi: 10.1093/molehr/gay014. PubMed PMID: 29538679; PubMed Central PMCID: PMCPMC6530817.
  17. Takahashi N, Harada M, Azhary JMK, Kunitomi C, Nose E, Terao H, et al. Accumulation of advanced glycation end products in follicles is associated with poor oocyte developmental competence. Mol Hum Reprod. 2019;25:684-94. doi: 10.1093/molehr/gaz050. PubMed PMID: 31504800.
  18. Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab. 2012;97:2231-42. doi: 10.1210/jc.2011-3408. PubMed PMID: 22508704.
  19. Ghelani H, Razmovski-Naumovski V, Pragada RR, Nammi S. (R)-alpha-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. BMC Complement Altern Med. 2018;18:13. doi: 10.1186/s12906-017-2076-6. PubMed PMID: 29334926; PubMed Central PMCID: PMCPMC5769525.
  20. Li XZ, Yan HD, Wang J. Extract of Ginkgo biloba and alpha-lipoic acid attenuate advanced glycation end products accumulation and RAGE expression in diabetic nephropathy rats]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2011;31:525-31. PubMed PMID: 21608227.
  21. Haghighian HK, Haidari F, Mohammadi-Asl J, Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril. 2015;104:318-24. doi: 10.1016/j.fertnstert.2015.05.014. PubMed PMID: 26051095.
  22. Talebi A, Zavareh S, Kashani MH, Lashgarbluki T, Karimi I. The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. J Assist Reprod Genet. 2012;29:175-83. doi: 10.1007/s10815-011-9706-6. PubMed PMID: 22231012; PubMed Central PMCID: PMCPMC3270132.
  23. Ozel F, Kiray M, Goker A, Aydemir S, Micili SC. Protective effect of alpha lipoic acid on 4-vinylcyclohexene diepoxide induced primary ovarian failure in female rats. Taiwan J Obstet Gynecol. 2020;59:293-300. doi: 10.1016/j.tjog.2020.01.020. PubMed PMID: 32127153.
  24. Padmalayam I, Hasham S, Saxena U, Pillarisetti S. Lipoic acid synthase (LASY): a novel role in inflammation, mitochondrial function, and insulin resistance. Diabetes. 2009;58:600-8. doi: 10.2337/db08-0473. PubMed PMID: 19074983; PubMed Central PMCID: PMCPMC2646058.
  25. Soylu Karapinar O, Pinar N, Ozcan O, Ozgur T, Dolapcioglu K. Protective effect of alpha-lipoic acid in methotrexate-induced ovarian oxidative injury and decreased ovarian reserve in rats. Gynecol Endocrinol. 2017;33:653-9. doi: 10.1080/09513590.2017.1306847. PubMed PMID: 28361557.
  26. Lazic SE, Clarke-Williams CJ, Munafo MR. What exactly is ‘N’ in cell culture and animal experiments? PLoS Biol. 2018;16:e2005282. doi: 10.1371/journal.pbio.2005282. PubMed PMID: 29617358; PubMed Central PMCID: PMCPMC5902037.
  27. Garg D, Merhi Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016;14:71. doi: 10.1186/s12958-016-0205-6. PubMed PMID: 27769286; PubMed Central PMCID: PMCPMC5073880.
  28. Jinno M, Takeuchi M, Watanabe A, Teruya K, Hirohama J, Eguchi N, et al. Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Hum Reprod. 2011;26:604-10. doi: 10.1093/humrep/deq388. PubMed PMID: 21233108.
  29. Diamanti-Kandarakis E, Piperi C, Korkolopoulou P, Kandaraki E, Levidou G, Papalois A, et al. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. J Mol Med (Berl). 2007;85:1413-20. doi: 10.1007/s00109-007-0246-6. PubMed PMID: 17694292.
  30. Merhi Z, Du XQ, Charron MJ. Perinatal exposure to high dietary advanced glycation end products affects the reproductive system in female offspring in mice. Mol Hum Reprod. 2020;26:615-23. doi: 10.1093/molehr/gaaa046. PubMed PMID: 32609365.
  31. Gao EM, Turathum B, Wang L, Zhang D, Liu YB, Tang RX, et al. The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod Sci. 2022;29:1343-56. doi: 10.1007/s43032-021-00691-3. PubMed PMID: 34374964; PubMed Central PMCID: PMCPMC8907092.
  32. Dozortsev DI, Diamond MP. Luteinizing hormone-independent rise of progesterone as the physiological trigger of the ovulatory gonadotropins surge in the human. Fertil Steril. 2020;114:191-9. doi: 10.1016/j.fertnstert.2020.06.016. PubMed PMID: 32741458.
  33. Lawrenz B, Melado L, Fatemi H. Premature progesterone rise in ART-cycles. Reprod Biol. 2018;18:1-4. doi: 10.1016/j.repbio.2018.01.001. PubMed PMID: 29317175.
  34. Tatone C, Amicarelli F. The aging ovary--the poor granulosa cells. Fertil Steril. 2013;99:12-7. doi: 10.1016/j.fertnstert.2012.11.029. PubMed PMID: 23273984.
  35. Garg D, Merhi Z. Advanced Glycation End Products: Link between Diet and Ovulatory Dysfunction in PCOS? Nutrients. 2015;7:10129-44. doi: 10.3390/nu7125524. PubMed PMID: 26690206; PubMed Central PMCID: PMCPMC4690076.
  36. Genazzani AD. Expert’s opinion: Integrative treatment with inositols and lipoic acid for insulin resistance of PCOS. Gynecol Reprod Endocrinol Metab. 2020;1:146-57.
  37. Niu G, Guo J, Tian Y, Zhao K, Li J, Xiao Q. alphalipoic acid can greatly alleviate the toxic effect of AGES on SHSY5Y cells. Int J Mol Med. 2018;41:2855-64. doi: 10.3892/ijmm.2018.3477. PubMed PMID: 29436603.
  38. Chen SA, Chen HM, Yao YD, Hung CF, Tu CS, Liang YJ. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur J Pharm Sci. 2012;47:875-83. doi: 10.1016/j.ejps.2012.08.018. PubMed PMID: 22985875.