Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: The Paraventricular Hypothalamic Nucleus (PVN) coordinates autonomic and neuroendocrine systems to maintain homeostasis. Microinjection of angiotensin II (AngII) into the PVN has been previously shown to produce pressor and bradycardia responses. Anatomical evidence has indicated that a substantial proportion of PVN neurons is connected with the neurons in the central amygdala (CeA). The present study aimed to examine the possible contribution of the CeA in cardiovascular responses evoked by microinjection of AngII into the parvocellular portion of PVN (PVNp) before and after microinjection of cobalt chloride (CoCl2) into the CeA.
Methods: The experiments were conducted at the Department of Physiology of Shiraz University of Medical Sciences, from April 2019 to November 2019. There were two groups of 21 eight-week-old urethane anesthetized male rats, namely saline (n=9 rats) and AngII (n=12 rats) groups. Drugs (100 nL) were microinjected via a single-glass micropipette into the PVNp and CeA. Their blood pressure (BP) and heart rate (HR) were recorded throughout the experiments. The mean arterial pressure (MAP) and heart rate (HR) were compared to the pre-injection values using paired t test, and to those of the saline group using independent t test.
Results: Microinjection of AngII into the PVNp produced pressor response (P<0.0001) with no significant changes in HR (P=0.70). Blockade of CeA with CoCl2 attenuated the pressor response to microinjection of AngII into the PVNp (P<0.001).
Conclusion: In the PVNp, Ang II increased the rats’ blood pressure. This response was in part mediated by the CeA. Our study suggested that these two nuclei cooperate to perform their cardiovascular functions.

Keywords

  1. Haselton JR, Goering J, Patel KP. Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. J Auton Nerv Syst. 1994;50:1-11. doi: 10.1016/0165-1838(94)90117-1. PubMed PMID: 7844308.
  2. Wang Y, Liu XF, Cornish KG, Zucker IH, Patel KP. Effects of nNOS antisense in the paraventricular nucleus on blood pressure and heart rate in rats with heart failure. Am J Physiol Heart Circ Physiol. 2005;288:H205-13. doi: 10.1152/ajpheart.00497.2004. PubMed PMID: 15331368.
  3. Coote JH. Landmarks in understanding the central nervous control of the cardiovascular system. Exp Physiol. 2007;92:3-18. doi: 10.1113/expphysiol.2006.035378. PubMed PMID: 17030558.
  4. Dampney RA. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol. 2015;309:R429-43. doi: 10.1152/ajpregu.00051.2015. PubMed PMID: 26041109.
  5. Pyner S. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat. 2009;38:197-208. doi: 10.1016/j.jchemneu.2009.03.005. PubMed PMID: 19778682.
  6. Stern JE. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? Prog Biophys Mol Biol. 2004;84:197-215. doi: 10.1016/j.pbiomolbio.2003.11.015. PubMed PMID: 14769436.
  7. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand. 2003;177:17-26. doi: 10.1046/j.1365-201X.2003.01043.x. PubMed PMID: 12492775.
  8. Capone C, Faraco G, Peterson JR, Coleman C, Anrather J, Milner TA, et al. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension. J Neurosci. 2012;32:4878-86. doi: 10.1523/JNEUROSCI.6262-11.2012. PubMed PMID: 22492044; PubMed Central PMCID: PMCPMC3328774.
  9. Oldfield BJ, Davern PJ, Giles ME, Allen AM, Badoer E, McKinley MJ. Efferent neural projections of angiotensin receptor (AT1) expressing neurones in the hypothalamic paraventricular nucleus of the rat. J Neuroendocrinol. 2001;13:139-46. doi: 10.1046/j.1365-2826.2001.00597.x. PubMed PMID: 11168839.
  10. Khanmoradi M, Nasimi A. Functions of AT1 and AT2 angiotensin receptors in the paraventricular nucleus of the rat, correlating single-unit and cardiovascular responses. Brain Res Bull. 2017;132:170-9. doi: 10.1016/j.brainresbull.2017.06.003. PubMed PMID: 28596051.
  11. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23:187-93. doi: 10.1152/physiol.00002.2008. PubMed PMID: 18697992; PubMed Central PMCID: PMCPMC2538674.
  12. Khanmoradi M, Nasimi A. Endogenous angiotensin II in the paraventricular nucleus regulates arterial pressure during hypotension in rat, a single-unit study. Neurosci Res. 2017;114:35-42. doi: 10.1016/j.neures.2016.09.004. PubMed PMID: 27637162.
  13. Khanmoradi M, Nasimi A. Angiotensin II in the paraventricular nucleus stimulates sympathetic outflow to the cardiovascular system and make vasopressin release in rat. Neurosci Lett. 2016;632:98-103. doi: 10.1016/j.neulet.2016.08.040. PubMed PMID: 27565052.
  14. Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. Role of angiotensin receptors in the medial amygdaloid nucleus in autonomic, baroreflex and cardiovascular changes evoked by chronic stress in rats. Eur J Neurosci. 2021;53:763-77. doi: 10.1111/ejn.15094. PubMed PMID: 33372338.
  15. Myers B. Corticolimbic regulation of cardiovascular responses to stress. Physiol Behav. 2017;172:49-59. doi: 10.1016/j.physbeh.2016.10.015. PubMed PMID: 27793557; PubMed Central PMCID: PMCPMC5618801.
  16. Hernandez VS, Hernandez OR, Perez de la Mora M, Gomora MJ, Fuxe K, Eiden LE, et al. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Front Neural Circuits. 2016;10:92. doi: 10.3389/fncir.2016.00092. PubMed PMID: 27932956; PubMed Central PMCID: PMCPMC5122712.
  17. Prewitt CM, Herman JP. Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. Journal of chemical neuroanatomy. 1998;15:173-86. doi: 10.1016/S0891-0618(98)00045-3.
  18. Paxinos G, Watson C. A stereotaxic atlas of the rat brain. New York: Academic; 2007.
  19. Yeganeh F, Nasimi A, Hatam M. Interaction of GABA and norepinephrine in the lateral division of the bed nucleus of the stria terminals in anesthetized rat, correlating single-unit and cardiovascular responses. Neuroscience. 2017;356:255-64. doi: 10.1016/j.neuroscience.2017.05.044. PubMed PMID: 28576724.
  20. Mirzaei-Damabi N, Hatam M, Yeganeh F, Ketabchi F, Nasimi A. Roles of glutamate and GABA of the Kolliker-Fuse nucleus in generating the cardiovascular chemoreflex. Pflugers Arch. 2020;472:1051-63. doi: 10.1007/s00424-020-02422-0. PubMed PMID: 32617654.
  21. Albrecht D, Nitschke T, Von Bohlen Und Halbach O. Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J. 2000;14:925-31. doi: 10.1096/fasebj.14.7.925. PubMed PMID: 10783146.
  22. Hatam M, Ganjkhani M. Effect of GABA(A) Receptors in the Rostral Ventrolateral Medulla on Cardiovascular Response to the Activation of the Bed Nucleus of the Stria Terminalis in Female Ovariectomized Rats. Iran J Med Sci. 2012;37:242-52. PubMed PMID: 23390330; PubMed Central PMCID: PMCPMC3565197.
  23. Mirzaei-Damabi N, Namvar GR, Yeganeh F, Hatam M. alpha2 Receptors in the lateral parabrachial nucleus generates the pressor response of the cardiovascular chemoreflex, effects of GABAA receptor. Brain Res Bull. 2018;140:190-6. doi: 10.1016/j.brainresbull.2018.05.009. PubMed PMID: 29775659.
  24. Zhu GQ, Patel KP, Zucker IH, Wang W. Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol. 2002;282:H2039-45. doi: 10.1152/ajpheart.00854.2001. PubMed PMID: 12003809.
  25. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18:383-439. doi: 10.1006/frne.1997.0155. PubMed PMID: 9344632
  26. von Bohlen und Halbach O. The renin-angiotensin system in the mammalian central nervous system. Curr Protein Pept Sci. 2005;6:355-71. doi: 10.2174/1389203054546361. PubMed PMID: 16101434.
  27. Becker LK, Etelvino GM, Walther T, Santos RA, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol. 2007;293:H1416-24. doi: 10.1152/ajpheart.00141.2007. PubMed PMID: 17496218.
  28. de Kloet AD, Wang L, Ludin JA, Smith JA, Pioquinto DJ, Hiller H, et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Struct Funct. 2016;221:891-912. doi: 10.1007/s00429-014-0943-1. PubMed PMID: 25427952; PubMed Central PMCID: PMCPMC4446257.
  29. Krout KE, Mettenleiter TC, Karpitskiy V, Nguyen XV, Loewy AD. CNS neurons with links to both mood-related cortex and sympathetic nervous system. Brain Res. 2005;1050:199-202. doi: 10.1016/j.brainres.2005.04.090. PubMed PMID: 15975562.
  30. Kubo T, Numakura H, Endo S, Hagiwara Y, Fukumori R. Angiotensin receptor blockade in the anterior hypothalamic area inhibits stress-induced pressor responses in rats. Brain Res Bull. 2001;56:569-74. doi: 10.1016/s0361-9230(01)00729-8. PubMed PMID: 11786243.
  31. Kubo T, Okatani H, Nishigori Y, Hagiwara Y, Fukumori R, Goshima Y. Involvement of the medial amygdaloid nucleus in restraint stress-induced pressor responses in rats. Neurosci Lett. 2004;354:84-6. doi: 10.1016/j.neulet.2003.09.061. PubMed PMID: 14698487.
  32. Salome N, Ngampramuan S, Nalivaiko E. Intra-amygdala injection of GABAA agonist, muscimol, reduces tachycardia and modifies cardiac sympatho-vagal balance during restraint stress in rats. Neuroscience. 2007;148:335-41. doi: 10.1016/j.neuroscience.2007.06.022. PubMed PMID: 17683873.
  33. de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, et al. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology. 2016;157:3167-80. doi: 10.1210/en.2016-1131. PubMed PMID: 27267713; PubMed Central PMCID: PMCPMC4967126.
  34. Keil LC, Summy-Long J, Severs WB. Release of vasopressin by angiotensin II. Endocrinology. 1975;96:1063-5. doi: 10.1210/endo-96-4-1063. PubMed PMID: 235417.
  35. Toney GM, Porter JP. Functional role of brain AT1 and AT2 receptors in the central angiotensin II pressor response. Brain Res. 1993;603:57-63. doi: 10.1016/0006-8993(93)91299-8. PubMed PMID: 8453478.
  36. Sun N, Cassell MD. Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol. 1993;330:381-404. doi: 10.1002/cne.903300308. PubMed PMID: 8385679.
  37. Swanson LW, Petrovich GD. What is the amygdala? Trends Neurosci. 1998;21:323-31. doi: 10.1016/s0166-2236(98)01265-x. PubMed PMID: 9720596.