Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Recombinant Protein Laboratory, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; and Histomorphometry and Stereology Research Center, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran

2 Recombinant Protein Laboratory, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; and Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran

3 Recombinant Protein Laboratory, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran;

4 Recombinant Protein Laboratory, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; and Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10.Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05.Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability.

Keywords

  1. World Health Organization [Internet]. Tuberculosis. Fact sheet No. 104, 2013. Available from: http://www.who.int/mediacentre/factsheets/fs104/en/
  2. Masoumi Asl HMM, Alborzi AM, Pourabbas BP, Kalani MM. QuantiFERON-TB Gold and Tuberculin Skin Test for the Diagnosis of Latent Tuberculosis Infection in Children. Iran J Med Sci. 2015;40:411-7. PubMed PMID: 26379347; PubMed Central PMCID: PMC4567600.
  3. Cao W, Tang S, Yuan H, Wang H, Zhao X, Lu H. Mycobacterium tuberculosis antigen Wag31 induces expression of C-chemokine XCL2 in macrophages. Curr Microbiol. 2008;57:189-94. doi: 10.1007/s00284-008-9172-2. PubMed PMID: 18618175.
  4. Lew JM, Kapopoulou A, Jones LM, Cole ST. TubercuList--10 years after. Tuberculosis (Edinb). 2011;91:1-7. doi: 10.1016/j.tube.2010.09.008. PubMed PMID: 20980199.
  5. Guo S, Xue R, Li Y, Wang SM, Ren L, Xu JJ. The CFP10/ESAT6 complex of Mycobacterium tuberculosis may function as a regulator of macrophage cell death at different stages of tuberculosis infection. Med Hypotheses. 2012;78:389-92. doi: 10.1016/j.mehy.2011.11.022. PubMed PMID: 22192908.
  6. Marei A, Ghaemmaghami A, Renshaw P, Wiselka M, Barer M, Carr M, et al. Superior T cell activation by ESAT-6 as compared with the ESAT-6-CFP-10 complex. Int Immunol. 2005;17:1439-46. doi: 10.1093/intimm/dxh322. PubMed PMID: 16186161.
  7. Boom WH, Canaday DH, Fulton SA, Gehring AJ, Rojas RE, Torres M. Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb). 2003;83:98-106. doi: 10.1016/S1472-9792(02)00054-9. PubMed PMID: 12758197.
  8. Koo MS, Subbian S, Kaplan G. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Commun Signal. 2012;10:2. doi: 10.1186/1478-811X-10-2. PubMed PMID: 22280836; PubMed Central PMCID: PMC3317440.
  9. Ebtekar M, Yaraee R, Ahmadiani A, Sabahi F. Kinetics of Nitric Oxide Production and MTT Reduction by HSV-1 Infected Macrophages. Iran J Med Sci. 2006;31:9-13.
  10. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820-32. doi: 10.1038/nrmicro1004. PubMed PMID: 15378046.
  11. Bonato VL, Medeiros AI, Lima VM, Dias AR, Faccioliti LH, Silva CL. Downmodulation of CD18 and CD86 on macrophages and VLA-4 on lymphocytes in experimental tuberculosis. Scand J Immunol. 2001;54:564-73. doi: 10.1046/j.1365-3083.2001.00996.x. PubMed PMID: 11902331.
  12. Schlesinger LS. Role of mononuclear phagocytes in M tuberculosis pathogenesis. J Investig Med. 1996;44:312-23. PubMed PMID: 8795295.
  13. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285:732-6. doi: 10.1126/science.285.5428.732. PubMed PMID: 10426995.
  14. Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 2000;97:8841-8. doi: 10.1073/pnas.97.16.8841. PubMed PMID: 10922044; PubMed Central PMCID: PMC34021.
  15. Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun. 1995;63:736-40. PubMed PMID: 7529749; PubMed Central PMCID: PMC173063.
  16. Hanano R, Kaufmann SH. Nitric oxide production and mycobacterial growth inhibition by murine alveolar macrophages: the sequence of rIFN-gamma stimulation and Mycobacterium bovis BCG infection determines macrophage activation. Immunol Lett. 1995;45:23-7. doi: 10.1016/0165-2478(94)00193-U. PubMed PMID: 7622183.
  17. O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475-527. doi: 10.1146/annurev-immunol-032712-095939. PubMed PMID: 23516984.
  18. Silva CL, Lowrie DB. Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun. 2000;68:3269-74. doi: 10.1128/IAI.68.6.3269-3274.2000. PubMed PMID: 10816472; PubMed Central PMCID: PMC97577.
  19. Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007;56:45-50. doi: 10.1007/s00011-007-6115-5. PubMed PMID: 17334670.
  20. Leoni F, Magnani JL, Miotti S, Canevari S, Pasquali M, Sonnino S, et al. The antitumor monoclonal antibody MOv2 recognizes the Lewis A hapten. Hybridoma. 1988;7:129-39. doi: 10.1089/hyb.1988.7.129. PubMed PMID: 3372000.
  21. Hemmati M, Seghatoleslam A, Rasti M, Ebadat S, Naghibalhossaini F, Mostafavi-Pour Z. Additive effect of recombinant Mycobacterium tuberculosis ESAT-6 protein and ESAT-6/CFP-10 fusion protein in adhesion of macrophages through fibronectin receptors. J Microbiol Immunol Infect. 2014.
  22. Ganguly N, Giang PH, Gupta C, Basu SK, Siddiqui I, Salunke DM, et al. Mycobacterium tuberculosis secretory proteins CFP-10, ESAT-6 and the CFP10:ESAT6 complex inhibit lipopolysaccharide-induced NF-kappaB transactivation by downregulation of reactive oxidative species (ROS) production. Immunol Cell Biol. 2008;86:98-106. doi: 10.1038/sj.icb.7100117. PubMed PMID: 17909563.
  23. Singh G, Singh B, Trajkovic V, Sharma P. Mycobacterium tuberculosis 6kDa early secreted antigenic target stimulates activation of J774 macrophages. Immunology letters. 2005;98:180-8. doi: 10.1016/j.imlet.2004.11.011
  24. Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol. 2014;32:609-34. doi: 10.1146/annurev-immunol-032713-120236. PubMed PMID: 24655299.
  25. Okugawa S, Ota Y, Kitazawa T, Nakayama K, Yanagimoto S, Tsukada K, et al. Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am J Physiol Cell Physiol. 2003;285:C399-408. doi: 10.1152/ajpcell.00026.2003. PubMed PMID: 12686512.
  26. Ehlting C, Häussinger D, Bode JG. Crucial role of the MAPKAP kinases 2 and 3 for pathogen-induced inflammation and their relevance for the immune response of the liver. Eur J Med Res. 2014;19:S24. doi: 10.1186/2047-783X-19-S1-S24.
  27. Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem. 1992;267:14955-62. PubMed PMID: 1321821.
  28. Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001;2:569-77. doi: 10.1038/35085034. PubMed PMID: 11483990.
  29. Trajkovic V, Singh G, Singh B, Singh S, Sharma P. Effect of Mycobacterium tuberculosis-specific 10-kilodalton antigen on macrophage release of tumor necrosis factor alpha and nitric oxide. Infect Immun. 2002;70:6558-66. doi: 10.1128/IAI.70.12.6558-6566.2002. PubMed PMID: 12438325; PubMed Central PMCID: PMC132989.
  30. Basu SK, Kumar D, Ganguly N, Rao KV, Sharma P. Mycobacterium tuberculosis secreted antigen (MTSA-10) inhibits macrophage response to lipopolysaccharide by redox regulation of phosphatases. Indian J Exp Biol. 2009;47:505-19. PubMed PMID: 19634717.
  31. Stefanova I, Corcoran ML, Horak EM, Wahl LM, Bolen JB, Horak ID. Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem. 1993;268:20725-8. PubMed PMID: 7691802.
  32. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453-62. doi: 10.1016/j.cub.2014.03.034. PubMed PMID: 24845678; PubMed Central PMCID: PMC4055301.
  33. Lee SB, Schorey JS. Activation and mitogen-activated protein kinase regulation of transcription factors Ets and NF-kappaB in Mycobacterium-infected macrophages and role of these factors in tumor necrosis factor alpha and nitric oxide synthase 2 promoter function. Infect Immun. 2005;73:6499-507. doi: 10.1128/IAI.73.10.6499-6507.2005. PubMed PMID: 16177323; PubMed Central PMCID: PMC1230939.
  34. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A. 2003;100:13001-6. doi: 10.1073/pnas.2235593100. PubMed PMID: 14557536; PubMed Central PMCID: PMC240734.
  35. Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol. 2007;8:610-8. doi: 10.1038/ni1468. PubMed PMID: 17486091.
  36. Yang R, Xi C, Sita DR, Sakai S, Tsuchiya K, Hara H, et al. The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1alpha from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathog Dis. 2014;70:51-60. doi: 10.1111/2049-632X.12075. PubMed PMID: 23913588.
  37. Gupta D, Sharma S, Singhal J, Satsangi AT, Antony C, Natarajan K. Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection. J Immunol. 2010;184:5444-55. doi: 10.4049/jimmunol.0903283. PubMed PMID: 20385877.
  38. Ganguly N, Giang PH, Basu SK, Mir FA, Siddiqui I, Sharma P. Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunol. 2007;8:24. doi: 10.1186/1471-2172-8-24. PubMed PMID: 17915024; PubMed Central PMCID: PMC2082026.