Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Natural Resources Researches, Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran

3 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;

10.30476/ijms.2021.91258.2245

Abstract

Background: Brown algae have gained worldwide attention due to their significant biological activities, such as antidiabetic properties. In the present study, the antidiabetic properties of six brown algae from the Persian Gulf were investigated.
Methods: An experimental study was conducted from 2017to 2019 to examine the inhibitory effects of six brown algae against the α-glucosidase activity. Methanol (MeOH) and 80% MeOH extracts of Colpomenia sinuosa, Sargassum acinaciforme, Iyengaria stellata, Sirophysalis trinodis, and two accessions of Polycladia myrica were analyzed. The effect of 80% MeOH extracts of Sirophysalis trinodis on blood glucose levels in streptozotocin-induced diabetic rats was evaluated. Chemical constituents of brown algae were analyzed using thin-layer chromatography and liquid chromatography-mass spectrometry techniques. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant.
Results: The 80% MeOH extracts of Iyengaria stellata (IC50=0.33±0.15 μg/mL) and Colpomenia sinuosa (IC50=3.50±0.75 μg/mL) as well as the MeOH extracts of Colpomenia sinuosa (IC50=3.31±0.44 μg/mL) exhibited strong inhibitory effect on α-glucosidase than the acarbose (IC50=160.15±27.52 μg/mL, P<0.001). The 80% MeOH extracts of Sirophysalis trinodis reduced postprandial blood glucose levels in diabetic rats than the control group (P=0.037). Fucoxanthin was characterized as the major antidiabetic agent in most of the algal extracts.
Conclusion: Sirophysalis trinodis is recommended as a novel source for isolation and identification of potential antidiabetic compounds due to its high in vivo and in vitro antidiabetic effects.

Keywords

  1. Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W. Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angewandte Chemie International Edition in English. 1981;20:744-61. doi: 10.1002/anie.198107441.
  2. Lebovitz HE. alpha-Glucosidase inhibitors. Endocrinol Metab Clin North Am. 1997;26:539-51. doi: 10.1016/s0889-8529(05)70266-8. PubMed PMID: 9314014.
  3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047-53. doi: 10.2337/diacare.27.5.1047. PubMed PMID: 15111519.
  4. Lee HJ, Kim HC, Vitek L, Nam CM. Algae consumption and risk of type 2 diabetes: Korean National Health and Nutrition Examination Survey in 2005. J Nutr Sci Vitaminol (Tokyo). 2010;56:13-8. doi: 10.3177/jnsv.56.13. PubMed PMID: 20354341.
  5. Tanemura Y, Yamanaka-Okumura H, Sakuma M, Nii Y, Taketani Y, Takeda E. Effects of the intake of Undaria pinnatifida (Wakame) and its sporophylls (Mekabu) on postprandial glucose and insulin metabolism. J Med Invest. 2014;61:291-7. doi: 10.2152/jmi.61.291. PubMed PMID: 25264047.
  6. Sharifuddin Y, Chin YX, Lim PE, Phang SM. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar Drugs. 2015;13:5447-91. doi: 10.3390/md13085447. PubMed PMID: 26308010; PubMed Central PMCID: PMCPMC4557030.
  7. Rayapu L, Chakraborty K, Valluru L. Marine Algae as a Potential Source for Anti-diabetic Compounds - A Brief Review. Curr Pharm Des. 2021;27:789-801. doi: 10.2174/1381612826666200909124526. PubMed PMID: 32912118.
  8. Nazarudin MF, Isha A, Mastuki SN, Ain NM, Mohd Ikhsan NF, Abidin AZ, et al. Chemical Composition and Evaluation of the alpha-Glucosidase Inhibitory and Cytotoxic Properties of Marine Algae Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium. Evid Based Complement Alternat Med. 2020;2020:2753945. doi: 10.1155/2020/2753945. PubMed PMID: 33299448; PubMed Central PMCID: PMCPMC7704141.
  9. Paradis ME, Couture P, Lamarche B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl Physiol Nutr Metab. 2011;36:913-9. doi: 10.1139/h11-115. PubMed PMID: 22087795.
  10. Mayer AMS, Guerrero AJ, Rodriguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs. 2021;19. doi: 10.3390/md19020049. PubMed PMID: 33494402; PubMed Central PMCID: PMCPMC7910995.
  11. Lee SH, Jeon YJ. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: a double-blind, randomized, placebo-controlled clinical trial. Food Funct. 2015;6:853-8. doi: 10.1039/c4fo00940a. PubMed PMID: 25608849.
  12. Wen Y, Gao L, Zhou H, Ai C, Huang X, Wang M, et al. Opportunities and challenges of algal fucoidan for diabetes management. Trends in Food Science & Technology. 2021;111:628-41. doi: 10.1016/j.tifs.2021.03.028.
  13. Wang N, Manabe Y, Sugawara T, Paul NA, Zhao J. Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chem. 2018;242:247-55. doi: 10.1016/j.foodchem.2017.09.075. PubMed PMID: 29037686.
  14. Matloub AA, Elsouda SSM, El-Senousy WM, Hamed M, Aly H, Ali SA, et al. In vitro antiviral, cytotoxic, antioxidant and hypolipidemic activities of polysaccharide isolated from marine algae. Int J Pharmacogn Phytochem Res. 2015;7:1099-111.
  15. Al Monla RM, Dassouki ZT, Gali-Muhtasib H, Mawlawi HR. Chemical analysis and biological potentials of extracts from Colpomenia sinuosa. Pharmacognosy Research. 2020;12:272.
  16. Pirian K, Moein S, Sohrabipour J, Rabiei R, Blomster J. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. Journal of Applied Phycology. 2017;29:3151-9. doi: 10.1007/s10811-017-1152-0.
  17. Alwaleed EA, Jillany A, Kasem NR, Galal H. Evaluation of the pancreatoprotective effect of algal extracts on Alloxan-induced diabetic rat. Bioactive Carbohydrates and Dietary Fibre. 2020;24:100237. doi: 10.1016/j.bcdf.2020.100237.
  18. Gheda S, Naby MA, Mohamed T, Pereira L, Khamis A. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environ Sci Pollut Res Int. 2021;28:22886-901. doi: 10.1007/s11356-021-12347-5. PubMed PMID: 33432409.
  19. Sheliya MA, Rayhana B, Ali A, Pillai KK, Aeri V, Sharma M, et al. Inhibition of alpha-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb. J Ethnopharmacol. 2015;176:1-8. doi: 10.1016/j.jep.2015.10.018. PubMed PMID: 26477374.
  20. Lineweaver H, Burk D. The determination of enzyme dissociation constants. Journal of the American chemical society. 1934;56:658-66. doi: 10.1021/ja01318a036.
  21. Daub CD, Mabate B, Malgas S, Pletschke BI. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, alpha-glucosidase. Int J Biol Macromol. 2020;151:412-20. doi: 10.1016/j.ijbiomac.2020.02.161. PubMed PMID: 32070744.
  22. Iran National Committee for Ethics in Biomedical Research. [cietd 17 September 2021]. Available from: https://ethics.research.ac.ir/IndexEn.php
  23. Leiter EH. Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol. 2009;560:1-17. doi: 10.1007/978-1-59745-448-3_1. PubMed PMID: 19504239.
  24. Minaiyan M, Ghannadi A, Movahedian A, Hakim-Elahi I. Effect of Hordeum vulgare L. (Barley) on blood glucose levels of normal and STZ-induced diabetic rats. Res Pharm Sci. 2014;9:173-8. PubMed PMID: 25657786; PubMed Central PMCID: PMCPMC4311281.
  25. Kim J. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. Journal of The Korean Society of Food Science and Nutrition. 2004;33:1133-8. doi: 10.3746/jkfn.2004.33.7.1133.
  26. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012;166:1843-55. doi: 10.1007/s12010-012-9602-2. PubMed PMID: 22371063.
  27. Zhang Y, Wu H, Wen H, Fang H, Hong Z, Yi R, et al. Simultaneous Determination of Fucoxanthin and Its Deacetylated Metabolite Fucoxanthinol in Rat Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Mar Drugs. 2015;13:6521-36. doi: 10.3390/md13106521. PubMed PMID: 26512677; PubMed Central PMCID: PMCPMC4626704.
  28. Akata I, Zengin G, Picot C, Mahomoodally M. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. South African Journal of Botany. 2019;120:95-9. doi: 10.1016/j.sajb.2018.01.008.
  29. Ko S-C, Lee S-H, Kang S-M, Ahn G, Cha S-H, Jeon Y-J. Evaluation of ${alpha} $-glucosidase Inhibitory Activity of Jeju Seaweeds Using High Throughput Screening (HTS) Technique. Journal of Marine Bioscience and Biotechnology. 2011;5:33-9. doi: 10.15433/KSMB.2011.5.4.033.
  30. Ali MY, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS. alpha-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium. Mar Drugs. 2017;15. doi: 10.3390/md15120368. PubMed PMID: 29194348; PubMed Central PMCID: PMCPMC5742828.
  31. Zaharudin N, Staerk D, Dragsted LO. Inhibition of alpha-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chem. 2019;270:481-6. doi: 10.1016/j.foodchem.2018.07.142. PubMed PMID: 30174076.
  32. Mikami K, Hosokawa M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci. 2013;14:13763-81. doi: 10.3390/ijms140713763. PubMed PMID: 23820585; PubMed Central PMCID: PMCPMC3742216.
  33. Zhang Y, Xu W, Huang X, Zhao Y, Ren Q, Hong Z, et al. Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. Journal of functional foods. 2018;48:515-24. doi: 10.1016/j.jff.2018.07.048.
  34. Gaubert J, Payri CE, Vieira C, Solanki H, Thomas OP. High metabolic variation for seaweeds in response to environmental changes: a case study of the brown algae Lobophora in coral reefs. Sci Rep. 2019;9:993. doi: 10.1038/s41598-018-38177-z. PubMed PMID: 30700781; PubMed Central PMCID: PMCPMC6353962.
  35. Wu SJ, Liou CJ, Chen YL, Cheng SC, Huang WC. Fucoxanthin Ameliorates Oxidative Stress and Airway Inflammation in Tracheal Epithelial Cells and Asthmatic Mice. Cells. 2021;10. doi: 10.3390/cells10061311. PubMed PMID: 34070405; PubMed Central PMCID: PMCPMC8227140.
  36. Xiao H, Zhao J, Fang C, Cao Q, Xing M, Li X, et al. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar Drugs. 2020;18. doi: 10.3390/md18120634. PubMed PMID: 33322296; PubMed Central PMCID: PMCPMC7763821.
  37. Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science & Technology. 2021;117:163-81. doi: 10.1016/j.tifs.2021.03.012.
  38. Jung HA, Islam M, Lee CM, Jeong HO, Chung HY, Woo HC, et al. Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fisheries Science. 2012;78:1321-9. doi: 10.1007/s12562-012-0552-y.
  39. Kawee-Ai A, Kim AT, Kim SM. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. Journal of Oceanology and Limnology. 2019;37:928-37. doi: 10.1007/s00343-019-8098-9.
  40. Shan X, Liu X, Hao J, Cai C, Fan F, Dun Y, et al. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int J Biol Macromol. 2016;82:249-55. doi: 10.1016/j.ijbiomac.2015.11.036. PubMed PMID: 26601762.
  41. Yuan Y, Zhang J, Fan J, Clark J, Shen P, Li Y, et al. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on alpha-amylase, alpha-glucosidase, pancreatic lipase and tyrosinase. Food Res Int. 2018;113:288-97. doi: 10.1016/j.foodres.2018.07.021. PubMed PMID: 30195523.