Iranian Journal of Medical Sciences

Document Type : Original Article(s)


1 Department of Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran

2 Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran

3 Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran

4 Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran


Background: Non-Hodgkin lymphoma (NHL) is the eleventh leading cause of cancer-related death in the world. Diffuse large B-cell lymphoma (DLBCL) is the most common type of NHL. Up to winter 2021-2022, the death toll caused by the coronavirus disease 2019 (COVID-19) has exceeded 5.6 million worldwide. Possible molecular mechanisms involved in the systemic inflammation and cytokine storm in COVID-19 patients are still not fully understood. MicroRNA-155 (miR-155) plays a role in the post-transcriptional gene regulation of hematopoiesis, oncogenesis, and inflammation. The present study aimed to evaluate the expression of miR-155 in patients with DLBCL and/or COVID-19.
Methods: A cross-sectional study was conducted from July to December 2020 in Tehran (Iran) to evaluate the expression of miR-155 in adult patients diagnosed with DLBCL and/or COVID-19. The real-time polymerase chain reaction technique was used to evaluate the expression of miR-155 in the sera of 92 adults who were either healthy or suffering from DLBCL and/or COVID-19. Relative quantification of gene expression was calculated in terms of cycle threshold (Ct) value. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant. 
Results: The expression of miR-155 was not associated with the sex or age of the participants. In comparison with healthy individuals (-ΔCt: -1.92±0.25), the expression of miR-155 increased in patients with COVID-19 (1.95±0.14), DLBCL (2.25±0.16), or both (4.33±0.65).
Conclusion: The expression of miR-155 increased in patients with DLBCL and/or COVID-19.


  1. Global Burden of Disease Cancer C, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3:524-48. doi: 10.1001/jamaoncol.2016.5688. PubMed PMID: 27918777; PubMed Central PMCID: PMCPMC6103527.
  2. Monabati A, Safaei A, Noori S, Mokhtari M, Vahedi A. Subtype distribution of lymphomas in South of Iran, analysis of 1085 cases based on World Health Organization classification. Ann Hematol. 2016;95:613-8. doi: 10.1007/s00277-016-2590-5. PubMed PMID: 26754635.
  3. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792:497-505. doi: 10.1016/j.bbadis.2009.02.013. PubMed PMID: 19268705.
  4. COVID-19 Data in motion [Internet]. Johns Hopkins University of Medicine: Coronavirus resource center. c2021. Available from:
  5. Li CX, Chen J, Lv SK, Li JH, Li LL, Hu X. Whole-Transcriptome RNA Sequencing Reveals Significant Differentially Expressed mRNAs, miRNAs, and lncRNAs and Related Regulating Biological Pathways in the Peripheral Blood of COVID-19 Patients. Mediators Inflamm. 2021;2021:6635925. doi: 10.1155/2021/6635925. PubMed PMID: 33833618; PubMed Central PMCID: PMCPMC8018221.
  6. Guterres A, de Azeredo Lima CH, Miranda RL, Gadelha MR. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect Genet Evol. 2020;85:104417. doi: 10.1016/j.meegid.2020.104417. PubMed PMID: 32526370; PubMed Central PMCID: PMCPMC7833518.
  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97. doi: 10.1016/s0092-8674(04)00045-5. PubMed PMID: 14744438.
  8. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513-8. doi: 10.1073/pnas.0804549105. PubMed PMID: 18663219; PubMed Central PMCID: PMCPMC2492472.
  9. Mashima R. Physiological roles of miR-155. Immunology. 2015;145:323-33. doi: 10.1111/imm.12468. PubMed PMID: 25829072; PubMed Central PMCID: PMCPMC4479532.
  10. Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs. 2021;81:517-31. doi: 10.1007/s40265-021-01474-5. PubMed PMID: 33638807; PubMed Central PMCID: PMCPMC7910799.
  11. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet. 2015;49:213-42. doi: 10.1146/annurev-genet-120213-092023. PubMed PMID: 26473382; PubMed Central PMCID: PMCPMC4743252.
  12. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406-15. doi: 10.1093/nar/gkg595. PubMed PMID: 12824337; PubMed Central PMCID: PMCPMC169194.
  13. Meder B, Backes C, Haas J, Leidinger P, Stahler C, Grossmann T, et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60:1200-8. doi: 10.1373/clinchem.2014.224238. PubMed PMID: 24987111.
  14. Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr Genomics. 2015;16:349-58. doi: 10.2174/1389202916666150707160147. PubMed PMID: 27047255; PubMed Central PMCID: PMCPMC4763973.
  15. Nagpal SDS, Singh NP, Mishra P, Singh A. Lymphoma in Rheumatoid Arthritis - Catastrophic Sequela of a Common Disease. J Assoc Physicians India. 2018;66:87-9. PubMed PMID: 31325274.
  16. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001-9. doi: 10.1002/art.23386. PubMed PMID: 18383392.
  17. Ahmadvand M, Eskandari M, Pashaiefar H, Yaghmaie M, Manoochehrabadi S, Khakpour G, et al. Over expression of circulating miR-155 predicts prognosis in diffuse large B-cell lymphoma. Leuk Res. 2018;70:45-8. doi: 10.1016/j.leukres.2018.05.006. PubMed PMID: 29807272.
  18. Higgs G, Slack F. The multiple roles of microRNA-155 in oncogenesis. J Clin Bioinforma. 2013;3:17. doi: 10.1186/2043-9113-3-17. PubMed PMID: 24073882; PubMed Central PMCID: PMCPMC3849775.
  19. Thompson RC, Herscovitch M, Zhao I, Ford TJ, Gilmore TD. NF-kappaB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway. J Biol Chem. 2011;286:1675-82. doi: 10.1074/jbc.M110.177063. PubMed PMID: 20947507; PubMed Central PMCID: PMCPMC3023462.
  20. Ranganath P. MicroRNA-155 and Its Role in Malignant Hematopoiesis. Biomark Insights. 2015;10:95-102. doi: 10.4137/BMI.S27676. PubMed PMID: 26523117; PubMed Central PMCID: PMCPMC4620936.
  21. Sandhu SK, Volinia S, Costinean S, Galasso M, Neinast R, Santhanam R, et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A. 2012;109:20047-52. doi: 10.1073/pnas.1213764109. PubMed PMID: 23169640; PubMed Central PMCID: PMCPMC3523868.
  22. Zhu FQ, Zeng L, Tang N, Tang YP, Zhou BP, Li FF, et al. MicroRNA-155 Downregulation Promotes Cell Cycle Arrest and Apoptosis in Diffuse Large B-Cell Lymphoma. Oncol Res. 2016;24:415-27. doi: 10.3727/096504016X14685034103473. PubMed PMID: 28281962; PubMed Central PMCID: PMCPMC7838747.
  23. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009;16:368-77. doi: 10.1038/cdd.2008.148. PubMed PMID: 18846109.
  24. Li XD, Li XM, Gu JW, Sun XC. MiR-155 regulates lymphoma cell proliferation and apoptosis through targeting SOCS3/JAK-STAT3 signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21:5153-9. doi: 10.26355/eurrev_201711_13832. PubMed PMID: 29228427.
  25. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med. 2009;1:288-95. doi: 10.1002/emmm.200900028. PubMed PMID: 19890474; PubMed Central PMCID: PMCPMC2771872.
  26. Elangovan S, Hsieh TC, Wu JM. Growth inhibition of human MDA-mB-231 breast cancer cells by delta-tocotrienol is associated with loss of cyclin D1/CDK4 expression and accompanying changes in the state of phosphorylation of the retinoblastoma tumor suppressor gene product. Anticancer Res. 2008;28:2641-7. PubMed PMID: 19035289.
  27. Chow JT, Salmena L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes (Basel). 2020;11. doi: 10.3390/genes11091002. PubMed PMID: 32858958; PubMed Central PMCID: PMCPMC7565861.
  28. Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol. 2021;97:107641. doi: 10.1016/j.intimp.2021.107641. PubMed PMID: 33895478; PubMed Central PMCID: PMCPMC8023203.
  29. Li S, Duan X, Li Y, Li M, Gao Y, Li T, et al. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging (Albany NY). 2021;13:9265-76. doi: 10.18632/aging.202877. PubMed PMID: 33780352; PubMed Central PMCID: PMCPMC8064215.
  30. Roganovic JR. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptor genes. J Periodontol. 2021;92:35-43. doi: 10.1002/JPER.20-0623. PubMed PMID: 33336412.
  31. Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation. 2016;13:240. doi: 10.1186/s12974-016-0699-z. PubMed PMID: 27604627; PubMed Central PMCID: PMCPMC5015201.
  32. Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, et al. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol. 2020;8:143. doi: 10.3389/fcell.2020.00143. PubMed PMID: 32211411; PubMed Central PMCID: PMCPMC7075948.
  33. Huffaker TB, O’Connell RM. miR-155-SOCS1 as a Functional Axis: Satisfying the Burden of Proof. Immunity. 2015;43:3-4. doi: 10.1016/j.immuni.2015.06.020. PubMed PMID: 26200005.
  34. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A. 2009;106:7113-8. doi: 10.1073/pnas.0902636106. PubMed PMID: 19359473; PubMed Central PMCID: PMCPMC2678424.
  35. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111-22. doi: 10.1038/nri2708. PubMed PMID: 20098459.
  36. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A. 2009;106:2735-40. doi: 10.1073/pnas.0811073106. PubMed PMID: 19193853; PubMed Central PMCID: PMCPMC2650335.
  37. Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol. 2009;9:514-20. doi: 10.1016/j.coph.2009.05.003. PubMed PMID: 19525145; PubMed Central PMCID: PMCPMC2742742.
  38. Su LC, Huang AF, Jia H, Liu Y, Xu WD. Role of microRNA-155 in rheumatoid arthritis. Int J Rheum Dis. 2017;20:1631-7. doi: 10.1111/1756-185X.13202. PubMed PMID: 29105307.