Iranian Journal of Medical Sciences

Document Type : Case Report(s)

Authors

1 A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center, Obninsk, Russia

2 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

3 P.A. Hertzen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Center of the Ministry of Health of Russia, Moscow, Russia

4 National Medical Research Radiological Center, Obninsk, Russia

Abstract

Extensive chest wall defects occur in 28% of all sternal resection cases and are a major challenge in thoracic surgery. These cases are generally considered “critical defects” requiring primary or secondary reconstruction using various types of flaps, mesh repairs, bone autografts, or endoprosthesis. The past decade witnessed rapid advances in the application of personalized endoprostheses in thoracic surgery. Surgeons began to use carbon or titanium grafts for personalized sternum replacement. The main advantages of these implants are superior cosmetic effect, biocompatibility, and low risk of infection. Herein, we present a case of a 55-year-old patient with an indication for extended sternum resection due to metastatic thyroid cancer. The patient underwent extended sternum resection, followed by the implantation of a personalized microporous titanium sternum equipped with graspers for atraumatic rib fixation.

Keywords

  1. Salo JTK, Tukiainen EJ. Oncologic Resection and Reconstruction of the Chest Wall: A 19-Year Experience in a Single Center. Plast Reconstr Surg. 2018;142:536-47. doi: 10.1097/PRS.0000000000004597. PubMed PMID: 29889739.
  2. Divisi D, Tosi D, Zaccagna G, De Vico A, Diotti C, Crisci R. Case Report: A New Tool for Anterior Chest Wall Reconstruction After Sternal Resection for Primary Or Secondary Tumors. Front Surg. 2021;8:691945. doi: 10.3389/fsurg.2021.691945. PubMed PMID: 34355015; PubMed Central PMCID: PMCPMC8331331.
  3. Gokce A, Babaroglu S, Ergani H. Multidisciplinary Surgery In Thoracic Wall Reconstruction For Sternal Osteomyelitis. Authorea. 2020. doi: 10.22541/au.160736489.93339258/v1.
  4. Dell’Amore A, Kalab M, Miller AS, 3rd, Dolci G, Liparulo V, Beigee FS, et al. Indications and Results of Sternal Allograft Transplantation: Learning From a Worldwide Experience. Ann Thorac Surg. 2021;112:238-47. doi: 10.1016/j.athoracsur.2020.08.032. PubMed PMID: 33080234.
  5. Wang B, Guo Y, Tang J, Yu F. Three-dimensional custom-made carbon-fiber prosthesis for sternal reconstruction after sarcoma resection. Thorac Cancer. 2019;10:1500-2. doi: 10.1111/1759-7714.13084. PubMed PMID: 31094079; PubMed Central PMCID: PMCPMC6558465.
  6. Motono N, Shimada K, Kamata T, Uramoto H. Sternal resection and reconstruction for metastasis due to breast cancer: the Marlex sandwich technique and implantation of a pedicled latissimus dorsi musculocutaneous flap. J Cardiothorac Surg. 2019;14:79. doi: 10.1186/s13019-019-0905-z. PubMed PMID: 30999925; PubMed Central PMCID: PMCPMC6471832.
  7. Elahi L, Zellweger M, Abdelnour-Berchtold E, Gonzalez M, Ris HB, Krueger T, et al. The size and sternal involvement of chest wall resections for malignant disease predict postoperative morbidity. Transl Cancer Res. 2022;11:1162-72. doi: 10.21037/tcr-21-2143. PubMed PMID: 35706797; PubMed Central PMCID: PMCPMC9189217.
  8. Sanna S, Ciarrocchi A, Campisi A, Mazzarra S, Argnani D, Davoli F, et al. Chest Wall Reconstruction after Surgical Resection: An Approach towards Various Techniques and Materials. Highlights on Medicine and Medical Science Vol 12. 2021:72-92. doi: 10.9734/bpi/hmms/v12/9702D.
  9. Carvajal C, Ramirez AM, Guerrero-Macias S, Beltran R, Buitrago R, Carreno J. A South American Experience With Postoperative Complications Following Chest Wall Reconstruction for Neoplasms. World J Surg. 2021;45:2982-92. doi: 10.1007/s00268-021-06215-z. PubMed PMID: 34180010.
  10. Zhang Y, Li JZ, Hao YJ, Lu XC, Shi HL, Liu Y, et al. Sternal tumor resection and reconstruction with titanium mesh: a preliminary study. Orthop Surg. 2015;7:155-60. doi: 10.1111/os.12169. PubMed PMID: 26033997; PubMed Central PMCID: PMCPMC6583156.
  11. Carvajal C, Ramirez AM, Guerrero-Macias S, Beltran R, Buitrago R, Carreno J. A South American Experience With Postoperative Complications Following Chest Wall Reconstruction for Neoplasms. World J Surg. 2021;45:2982-92. doi: 10.1007/s00268-021-06215-z. PubMed PMID: 34180010.
  12. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res A. 2004;69:601-10. doi: 10.1002/jbm.a.20100. PubMed PMID: 15162401.
  13. Baranovskii DS, Akhmedov BG, Demchenko AG, Krasheninnikov ME, Balyasin MV, Pavlova OY, et al. Minimally Manipulated Bone Marrow-Derived Cells Can Be Used for Tissue Engineering In Situ and Simultaneous Formation of Personalized Tissue Models. Bull Exp Biol Med. 2022;173:139-45. doi: 10.1007/s10517-022-05509-z. PubMed PMID: 35622254.