Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

2 Master Program in Biomedical Sciences, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

3 Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

4 Faculty of Medicine, IPB University, Bogor, West Java, Indonesia

10.30476/ijms.2023.96535.2868

Abstract

Background: Chlorogenic acid (CGA) is known to have antifibrotic and hypoglycemic effects and may play a role in preventing diabetes-induced pulmonary fibrosis. This study aimed to determine the effect and optimum dose of CGA on diabetes-induced pulmonary fibrosis.
Methods: Thirty Wistar rats (two-month-old, 150-200 grams) were randomly divided into six groups, namely control, six weeks diabetes mellitus (DM1), eight weeks DM (DM2), and three DM2 groups (CGA1, CGA2, and CGA3) who received CGA doses of 12.5, 25, and 50 mg/Kg BW, respectively. After six weeks, CGA was administered intraperitoneally for 14 consecutive days. Lung tissues were taken for TGF-β1, CTGF, SMAD7, Collagen-1, and α-SMA mRNA expression analysis and paraffin embedding. Data were analyzed using one-way ANOVA and the Kruskal-Wallis test. P<0.05 was considered statistically significant.
Results: TGF-β1 expression in the CGA1 group (1.01±0.10) was lower than the DM1 (1.33±0.25, P=0.05) and DM2 (1.33±0.20, P=0.021) groups. α-SMA expression in the CGA1 group (median 0.60, IQR: 0.34-0.64) was lower than the DM1 (median 0.44, IQR: 0.42-0.80) and DM2 (median 0.76, IQR: 0.66-1.10) groups. Collagen-1 expression in the CGA1 group (0.75±0.13) was lower than the DM1 (P=0.24) and DM2 (P=0.26) groups, but not statistically significant. CTGF expression in CGA groups was lower than the DM groups (P=0.088), but not statistically significant. There was an increase in SMAD7 expression in CGA groups (P=0.286). Histological analysis showed fibrosis improvement in the CGA1 group compared to the DM groups.
Conclusion: CGA (12.5 mg/Kg BW) inhibited the expression of profibrotic factors and increased antifibrotic factors in DM-induced rats.

Keywords

  1. Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th ed. Brussels: International Diabetes Federation; 2021.
  2. da Silva Almeida R, de Melo RC, Chaves MSS, Baptista GM, Margotto SS, de Oliveira Andrade LJ. Diabetic pneumopathy. Brazilian Journal of Medicine and Human Health (inactive/archive only). 2016;4. doi: 10.17267/2317-3386bjmhh.v4i1.791.
  3. Rajasurya V, Gunasekaran K, Surani S. Interstitial lung disease and diabetes. World J Diabetes. 2020;11:351-7. doi: 10.4239/wjd.v11.i8.351. PubMed PMID: 32864047; PubMed Central PMCID: PMCPMC7438183.
  4. Wang D, Ma Y, Tong X, Zhang Y, Fan H. Diabetes Mellitus Contributes to Idiopathic Pulmonary Fibrosis: A Review From Clinical Appearance to Possible Pathogenesis. Front Public Health. 2020;8:196. doi: 10.3389/fpubh.2020.00196. PubMed PMID: 32582606; PubMed Central PMCID: PMCPMC7285959.
  5. Hamdy G, Amin M, Rashad A. Pulmonary function changes in diabetic lung. Egyptian Journal of Chest Diseases and Tuberculosis. 2013;62:513-7. doi: 10.1016/j.ejcdt.2013.07.006.
  6. Schuyler MR, Niewoehner DE, Inkley SR, Kohn R. Abnormal lung elasticity in juvenile diabetes mellitus. Am Rev Respir Dis. 1976;113:37-41. doi: 10.1164/arrd.1976.113.1.37. PubMed PMID: 1247213.
  7. Talakatta G, Sarikhani M, Muhamed J, Dhanya K, Somashekar BS, Mahesh PA, et al. Diabetes induces fibrotic changes in the lung through the activation of TGF-beta signaling pathways. Sci Rep. 2018;8:11920. doi: 10.1038/s41598-018-30449-y. PubMed PMID: 30093732; PubMed Central PMCID: PMCPMC6085305.
  8. Bai L, Zhang L, Pan T, Wang W, Wang D, Turner C, et al. Idiopathic pulmonary fibrosis and diabetes mellitus: a meta-analysis and systematic review. Respir Res. 2021;22:175. doi: 10.1186/s12931-021-01760-6. PubMed PMID: 34103046; PubMed Central PMCID: PMCPMC8188656.
  9. Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res. 2018;19:136. doi: 10.1186/s12931-018-0834-8. PubMed PMID: 30021582; PubMed Central PMCID: PMCPMC6052671.
  10. Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, et al. The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 2013;41:1207-18. doi: 10.1183/09031936.00073012. PubMed PMID: 23100500.
  11. Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis. 2021;28:378-90. doi: 10.1053/j.ackd.2021.09.010. PubMed PMID: 34922694.
  12. Mummidi S, Das NA, Carpenter AJ, Kandikattu H, Krenz M, Siebenlist U, et al. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol. 2016;98:95-102. doi: 10.1016/j.yjmcc.2016.07.006. PubMed PMID: 27423273.
  13. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24:1121-7. doi: 10.1038/s41591-018-0087-6. PubMed PMID: 29967351; PubMed Central PMCID: PMCPMC6081262.
  14. Liang N, Kitts DD. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients. 2015;8. doi: 10.3390/nu8010016. PubMed PMID: 26712785; PubMed Central PMCID: PMCPMC4728630.
  15. Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol. 2013;85:1341-51. doi: 10.1016/j.bcp.2013.02.008. PubMed PMID: 23416115.
  16. Shi H, Dong L, Jiang J, Zhao J, Zhao G, Dang X, et al. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology. 2013;303:107-14. doi: 10.1016/j.tox.2012.10.025. PubMed PMID: 23146752.
  17. Yunus J, Salman M, Lintin GBR, Muchtar M, Sari DCR, Arfian N, et al. Chlorogenic acid attenuates kidney fibrosis via antifibrotic action of BMP-7 and HGF. Med J Malaysia. 2020;75:5-9. PubMed PMID: 32471962.
  18. Wang YC, Dong J, Nie J, Zhu JX, Wang H, Chen Q, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition. Apoptosis. 2017;22:1147-56. doi: 10.1007/s10495-017-1393-z. PubMed PMID: 28677092.
  19. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed PMID: 20613859; PubMed Central PMCID: PMCPMC2893951.
  20. Soliman ME. Evaluation of Time Dependent Changes of the Rat’s Lung in Experimentally Induced Diabetes Mellitus: Light and Electron Microscopic Study. Egyptian Journal of Histology. 2010;33:45-54. doi: 10.1097/00767537-201003000-00006.
  21. Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne). 2022;13:800714. doi: 10.3389/fendo.2022.800714. PubMed PMID: 35282429; PubMed Central PMCID: PMCPMC8907382.
  22. Bagdas D, Etoz BC, Gul Z, Ziyanok S, Inan S, Turacozen O, et al. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol. 2015;81:54-61. doi: 10.1016/j.fct.2015.04.001. PubMed PMID: 25846499.
  23. Bagdas D, Cam Etoz B, Inan Ozturkoglu S, Cinkilic N, Ozyigit MO, Gul Z, et al. Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharm Bull. 2014;37:361-70. doi: 10.1248/bpb.b13-00635. PubMed PMID: 24389556.
  24. Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16:349-62. doi: 10.1038/s41574-020-0355-7. PubMed PMID: 32398822.
  25. Saito A, Horie M, Nagase T. TGF-beta Signaling in Lung Health and Disease. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19082460. PubMed PMID: 30127261; PubMed Central PMCID: PMCPMC6121238.
  26. Bagdas D, Gul NY, Topal A, Tas S, Ozyigit MO, Cinkilic N, et al. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:1101-16. doi: 10.1007/s00210-014-1034-9. PubMed PMID: 25129377.
  27. Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? J Agric Food Chem. 2014;62:4026-38. doi: 10.1021/jf500080z. PubMed PMID: 24779775.
  28. Leon-Gonzalez AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol. 2015;98:371-80. doi: 10.1016/j.bcp.2015.07.017. PubMed PMID: 26206193.
  29. Maurya DK, Devasagayam TP. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol. 2010;48:3369-73. doi: 10.1016/j.fct.2010.09.006. PubMed PMID: 20837085.
  30. Murakami A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch Biochem Biophys. 2014;557:3-10. doi: 10.1016/j.abb.2014.04.018. PubMed PMID: 24814373.
  31. Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int. 2007;31:1245-50. doi: 10.1016/j.cellbi.2007.04.009. PubMed PMID: 17583542.
  32. Suh KS, Chon S, Oh S, Kim SW, Kim JW, Kim YS, et al. Prooxidative effects of green tea polyphenol (-)-epigallocatechin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol. 2010;26:189-99. doi: 10.1007/s10565-009-9137-7. PubMed PMID: 19757103.
  33. Upadhyay S, Dixit M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxid Med Cell Longev. 2015;2015:504253. doi: 10.1155/2015/504253. PubMed PMID: 26180591; PubMed Central PMCID: PMCPMC4477245.
  34. Sotler R, Poljsak B, Dahmane R, Jukic T, Pavan Jukic D, Rotim C, et al. Prooxidant Activities of Antioxidants and Their Impact on Health. Acta Clin Croat. 2019;58:726-36. doi: 10.20471/acc.2019.58.04.20. PubMed PMID: 32595258; PubMed Central PMCID: PMCPMC7314298.
  35. Tam AYY, Horwell AL, Trinder SL, Khan K, Xu S, Ong V, et al. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension. Int J Biochem Cell Biol. 2021;134:105961. doi: 10.1016/j.biocel.2021.105961. PubMed PMID: 33662577; PubMed Central PMCID: PMCPMC8111417.
  36. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:S24. doi: 10.1186/1755-1536-5-S1-S24. PubMed PMID: 23259531; PubMed Central PMCID: PMCPMC3368796.
  37. Qin L, Zang M, Xu Y, Zhao R, Wang Y, Mi Y, et al. Chlorogenic Acid Alleviates Hyperglycemia-Induced Cardiac Fibrosis through Activation of the NO/cGMP/PKG Pathway in Cardiac Fibroblasts. Mol Nutr Food Res. 2021;65:e2000810. doi: 10.1002/mnfr.202000810. PubMed PMID: 33200558.
  38. Wang Y, Yang F, Xue J, Zhou X, Luo L, Ma Q, et al. Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob Agents Chemother. 2017;61. doi: 10.1128/AAC.01347-16. PubMed PMID: 27872076; PubMed Central PMCID: PMCPMC5278737.
  39. Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, et al. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-beta1/Smad7 Signaling Pathway in Vitro and in Vivo. Front Pharmacol. 2017;8:929. doi: 10.3389/fphar.2017.00929. PubMed PMID: 29311932; PubMed Central PMCID: PMCPMC5742161.
  40. Hillege MMG, Galli Caro RA, Offringa C, de Wit GMJ, Jaspers RT, Hoogaars WMH. TGF-beta Regulates Collagen Type I Expression in Myoblasts and Myotubes via Transient Ctgf and Fgf-2 Expression. Cells. 2020;9. doi: 10.3390/cells9020375. PubMed PMID: 32041253; PubMed Central PMCID: PMCPMC7072622.