Iranian Journal of Medical Sciences

Document Type : Review Article

Authors

Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland

10.30476/ijms.2023.97480.2925

Abstract

Physical activity has a positive effect on human health and emotional well-being. However, in both amateur and professional athletes, training poses a risk of acute or chronic injury through repetitive overloading of bones, joints, and muscles. Inflammation can be an adverse effect of intense exercise caused by several factors including oxidative stress. The present narrative review summarizes current knowledge on inflammatory markers induced by physical exercise. Post-exercise recovery may reduce inflammatory responses and is key to effective training and adaptation of muscle tissues to sustained physical exertion.

Keywords

  1. Salman A, Lee YH. Spiritual practices and effects of spiritual well-being and depression on elders’ self-perceived health. Appl Nurs Res. 2019;48:68-74. doi: 10.1016/j.apnr.2019.05.018. PubMed PMID: 31266611.
  2. Niemela M, Kangastupa P, Niemela O, Bloigu R, Juvonen T. Acute Changes in Inflammatory Biomarker Levels in Recreational Runners Participating in a Marathon or Half-Marathon. Sports Med Open. 2016;2:21. doi: 10.1186/s40798-016-0045-0. PubMed PMID: 27747777; PubMed Central PMCID: PMCPMC5005625.
  3. Bleakley C, McDonough S, Gardner E, Baxter GD, Hopkins JT, Davison GW. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev. 2012;2012:CD008262. doi: 10.1002/14651858.CD008262.pub2. PubMed PMID: 22336838; PubMed Central PMCID: PMCPMC6492480.
  4. Vieira A, Siqueira AF, Ferreira-Junior JB, do Carmo J, Durigan JL, Blazevich A, et al. The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage. Int J Sports Med. 2016;37:937-43. doi: 10.1055/s-0042-111438. PubMed PMID: 27557407.
  5. Pfafflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal Bioanal Chem. 2009;393:1473-80. doi: 10.1007/s00216-008-2561-3. PubMed PMID: 19104782.
  6. Paludan SR, Pradeu T, Masters SL, Mogensen TH. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol. 2021;21:137-50. doi: 10.1038/s41577-020-0391-5. PubMed PMID: 32782357; PubMed Central PMCID: PMCPMC7418297.
  7. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531-9. doi: 10.1007/s00441-017-2785-7. PubMed PMID: 29383445; PubMed Central PMCID: PMCPMC5820392.
  8. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204-18. doi: 10.18632/oncotarget.23208. PubMed PMID: 29467962; PubMed Central PMCID: PMCPMC5805548.
  9. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428-35. doi: 10.1038/nature07201. PubMed PMID: 18650913.
  10. Filep JG. Leukocytes in Inflammation, Resolution of Inflammation, Autoimmune Diseases and Cancer. Cells. 2021;10. doi: 10.3390/cells10071735. PubMed PMID: 34359905; PubMed Central PMCID: PMCPMC8307052.
  11. Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C. Redox regulation of inflammation: old elements, a new story. Med Res Rev. 2015;35:306-40. doi: 10.1002/med.21330. PubMed PMID: 25171147.
  12. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803-15. doi: 10.1038/nri2171. PubMed PMID: 17893694.
  13. Germolec DR, Shipkowski KA, Frawley RP, Evans E. Markers of Inflammation. Methods Mol Biol. 2018;1803:57-79. doi: 10.1007/978-1-4939-8549-4_5. PubMed PMID: 29882133.
  14. Jee H, Jin Y. Effects of prolonged endurance exercise on vascular endothelial and inflammation markers. J Sports Sci Med. 2012;11:719-26. PubMed PMID: 24150084; PubMed Central PMCID: PMCPMC3763320.
  15. Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol. 2018;9:892. doi: 10.3389/fimmu.2018.00892. PubMed PMID: 29760704; PubMed Central PMCID: PMCPMC5936965.
  16. Krishnamoorthy S, Honn KV. Inflammation and disease progression. Cancer Metastasis Rev. 2006;25:481-91. doi: 10.1007/s10555-006-9016-0. PubMed PMID: 17103050.
  17. Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. Curr Opin Physiol. 2018;1:7-13. doi: 10.1016/j.cophys.2017.09.001. PubMed PMID: 29552674; PubMed Central PMCID: PMCPMC5851468.
  18. Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8-25. PubMed PMID: 25826432.
  19. Kanda K, Sugama K, Hayashida H, Sakuma J, Kawakami Y, Miura S, et al. Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exerc Immunol Rev. 2013;19:72-85. PubMed PMID: 23977721.
  20. Simbertsev A, Kozlov I. Cytokine system. In: Kamkin A, editor. Mechanical stretch and cytokines. Dordrecht: Springer Science+Business Media BV; 2012. doi: 10.1007/978-94-007-2004-6_1.
  21. Remick DG. Interleukin-8. Crit Care Med. 2005;33:S466-7. doi: 10.1097/01.ccm.0000186783.34908.18. PubMed PMID: 16340423.
  22. Lin J, Liu X, Zhou Y, Zhu B, Wang Y, Cui W, et al. Molecular Basis of Irisin Regulating the Effects of Exercise on Insulin Resistance. Applied Sciences. 2022;12:5837. doi: 10.3390/app12125837.
  23. Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil. 2022;43:9-20. doi: 10.1007/s10974-021-09613-x. PubMed PMID: 35018575.
  24. Ramezani M, Taghian F. The effect of 8 weeks aerobic training and glycogon consumption on serum apelin and insulin resistance in women with type 2 diabetes. Iranian journal of diabetes and obesity. Iran J Diabetes Obes 2020; 11:164–72. doi: 10.18502/ijdo.v11i3.2605.
  25. Clark A, Huebinger RM, Carlson DL, Wolf SE, Song J. Serum Level of Musclin Is Elevated Following Severe Burn. J Burn Care Res. 2019;40:535-40. doi: 10.1093/jbcr/irz101. PubMed PMID: 31187123.
  26. Dugue B, Leppanen E. Adaptation related to cytokines in man: effects of regular swimming in ice-cold water. Clin Physiol. 2000;20:114-21. doi: 10.1046/j.1365-2281.2000.00235.x. PubMed PMID: 10735978.
  27. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191-7. doi: 10.1038/ni1276. PubMed PMID: 16369558.
  28. Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28:115327. doi: 10.1016/j.bmc.2020.115327. PubMed PMID: 31992476.
  29. Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford). 2018;57:ii43-ii50. doi: 10.1093/rheumatology/kex513. PubMed PMID: 29982781.
  30. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33:127-48. doi: 10.1093/intimm/dxaa078. PubMed PMID: 33337480; PubMed Central PMCID: PMCPMC7799025.
  31. Lee EC, Watson G, Casa D, Armstrong LE, Kraemer W, Vingren JL, et al. Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation. J Athl Train. 2012;47:655-63. doi: 10.4085/1062-6050-47.5.09. PubMed PMID: 23182014; PubMed Central PMCID: PMCPMC3499890.
  32. Palacios G, Pedrero-Chamizo R, Palacios N, Maroto-Sanchez B, Aznar S, Gonzalez-Gross M, et al. Biomarkers of physical activity and exercise. Nutr Hosp. 2015;31:237-44. doi: 10.3305/nh.2015.31.sup3.8771. PubMed PMID: 25719791.
  33. Cabral-Santos C, Castrillon CI, Miranda RA, Monteiro PA, Inoue DS, Campos EZ, et al. Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front Physiol. 2016;7:509. doi: 10.3389/fphys.2016.00509. PubMed PMID: 27867360; PubMed Central PMCID: PMCPMC5095487.
  34. Soares V, Silveira de Avelar I, Espindola Mota Venancio P, Pires-Oliveira DAA, de Almeida Silva PH, Rodrigues Borges A, et al. Acute Changes in Interleukin-6 Level During Four Days of Long-Distance Walking. J Inflamm Res. 2020;13:871-8. doi: 10.2147/JIR.S281113. PubMed PMID: 33204137; PubMed Central PMCID: PMCPMC7667508.
  35. Ma W, Xu T, Wang Y, Wu C, Wang L, Yang X, et al. The role of inflammatory factors in skeletal muscle injury. Biotarget. 2018;2:7. doi: 10.21037/biotarget.2018.04.01.
  36. Kimsa M, Strzalka-Mrozik B, Kimsa M, Gola J, Kochanska-Dziurowicz A, Zebrowska A, et al. Expression pattern of the transforming growth factor beta signaling genes in human peripheral blood mononuclear cells after exercise-inflammatory aspects. Am J Hum Biol. 2012;24:859-62. doi: 10.1002/ajhb.22311. PubMed PMID: 22915245.
  37. Meniailo ME, Malashchenko VV, Shmarov VA, Gazatova ND, Melashchenko OB, Goncharov AG, et al. Interleukin-8 favors pro-inflammatory activity of human monocytes/macrophages. Int Immunopharmacol. 2018;56:217-21. doi: 10.1016/j.intimp.2018.01.036. PubMed PMID: 29414654.
  38. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720-32. doi: 10.1182/blood-2010-07-273417. PubMed PMID: 21304099; PubMed Central PMCID: PMCPMC3083294.
  39. Cerqueira C, Manfroi B, Fillatreau S. IL-10-producing regulatory B cells and plasmocytes: Molecular mechanisms and disease relevance. Semin Immunol. 2019;44:101323. doi: 10.1016/j.smim.2019.101323. PubMed PMID: 31685302.
  40. Mila-Kierzenkowska C, Wozniak A, Szpinda M, Boraczynski T, Wozniak B, Rajewski P, et al. Effects of thermal stress on the activity of selected lysosomal enzymes in blood of experienced and novice winter swimmers. Scand J Clin Lab Invest. 2012;72:635-41. doi: 10.3109/00365513.2012.727214. PubMed PMID: 23061673.
  41. Simonaro CM. Lysosomes, lysosomal storage diseases, and inflammation. Journal of Inborn Errors of Metabolism and Screening. 2019;4. doi: 10.1177/2326409816650465.
  42. Meyer-Schwesinger C. Lysosome function in glomerular health and disease. Cell Tissue Res. 2021;385:371-92. doi: 10.1007/s00441-020-03375-7. PubMed PMID: 33433692; PubMed Central PMCID: PMCPMC8523507.
  43. Gan X, Qiu F, Jiang B, Yuan R, Xiang Y. Convenient and highly sensitive electrochemical biosensor for monitoring acid phosphatase activity. Sensors and Actuators B: Chemical. 2021;332:129483.
  44. Yan X, Xia C, Chen B, Li YF, Gao PF, Huang CZ. Enzyme Activity Triggered Blocking of Plasmon Resonance Energy Transfer for Highly Selective Detection of Acid Phosphatase. Anal Chem. 2020;92:2130-5. doi: 10.1021/acs.analchem.9b04685. PubMed PMID: 31850751.
  45. Anand A, Srivastava PK. A molecular description of acid phosphatase. Appl Biochem Biotechnol. 2012;167:2174-97. doi: 10.1007/s12010-012-9694-8. PubMed PMID: 22684363.
  46. de Pizzol Junior JP, Sasso-Cerri E, Cerri PS. Matrix Metalloproteinase-1 and Acid Phosphatase in the Degradation of the Lamina Propria of Eruptive Pathway of Rat Molars. Cells. 2018;7. doi: 10.3390/cells7110206. PubMed PMID: 30423799; PubMed Central PMCID: PMCPMC6262441.
  47. Yener Y, Celik I, Sur E, Oznurlu Y, Ozaydin T. Effects of long term oral acrylamide administration on alpha naphthyl acetate esterase and acid phosphatase activities in the peripheral blood lymphocytes of rats. Biotech Histochem. 2019;94:352-9. doi: 10.1080/10520295.2019.1571227. PubMed PMID: 30864862.
  48. Kovacs Z, Jung I, Gurzu S. Arylsulfatases A and B: From normal tissues to malignant tumors. Pathol Res Pract. 2019;215:152516. doi: 10.1016/j.prp.2019.152516. PubMed PMID: 31262576.
  49. Diez-Roux G, Ballabio A. Sulfatases and human disease. Annu Rev Genomics Hum Genet. 2005;6:355-79. doi: 10.1146/annurev.genom.6.080604.162334. PubMed PMID: 16124866.
  50. Ghosh D. Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci. 2007;64:2013-22. doi: 10.1007/s00018-007-7175-y. PubMed PMID: 17558559.
  51. Benes P, Vetvicka V, Fusek M. Cathepsin D--many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68:12-28. doi: 10.1016/j.critrevonc.2008.02.008. PubMed PMID: 18396408; PubMed Central PMCID: PMCPMC2635020.
  52. Ruiz-Blazquez P, Pistorio V, Fernandez-Fernandez M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol. 2021;75:1192-202. doi: 10.1016/j.jhep.2021.06.031. PubMed PMID: 34242696.
  53. Aghdassi AA, John DS, Sendler M, Weiss FU, Reinheckel T, Mayerle J, et al. Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis. J Biol Chem. 2018;293:1018-29. doi: 10.1074/jbc.M117.814772. PubMed PMID: 29229780; PubMed Central PMCID: PMCPMC5777244.
  54. Fusek M, Vetvicka V. Dual role of cathepsin D: ligand and protease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149:43-50. doi: 10.5507/bp.2005.003. PubMed PMID: 16170387.
  55. Poplawska B, Janciauskiene S, Chorostowska-Wynimko J. [Genetic variants of alpha-1 antitrypsin: classification and clinical implications]. Pneumonol Alergol Pol. 2013;81:45-54. PubMed PMID: 23258471.
  56. Sanders CL, Ponte A, Kueppers F. The Effects of Inflammation on Alpha 1 Antitrypsin Levels in a National Screening Cohort. COPD. 2018;15:10-6. doi: 10.1080/15412555.2017.1401600. PubMed PMID: 29381093.
  57. Bergin DA, Hurley K, McElvaney NG, Reeves EP. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz). 2012;60:81-97. doi: 10.1007/s00005-012-0162-5. PubMed PMID: 22349104.
  58. Ehlers MR. Immune-modulating effects of alpha-1 antitrypsin. Biol Chem. 2014;395:1187-93. doi: 10.1515/hsz-2014-0161. PubMed PMID: 24854541; PubMed Central PMCID: PMCPMC4237306.
  59. Thompson D, Milford-Ward A, Whicher JT. The value of acute phase protein measurements in clinical practice. Ann Clin Biochem. 1992;29:123-31. doi: 10.1177/000456329202900201. PubMed PMID: 1378257.
  60. Corlateanu A, Covantev S, Caraivanova I, Bodrug V, Botnaru V, Varon J, et al. Alpha-1 antitrypsin deficiency and chronic obstructive pulmonary disease: Between overlaps, phenotypes and illnesses. Current Respiratory Medicine Reviews. 2019;15:147-55. doi: 10.2174/1573398X15666190617143122.
  61. Brantly M. Alpha1-antitrypsin: not just an antiprotease: extending the half-life of a natural anti-inflammatory molecule by conjugation with polyethylene glycol. Am J Respir Cell Mol Biol. 2002;27:652-4. doi: 10.1165/rcmb.F250. PubMed PMID: 12444023.
  62. Levine RL, Moskovitz J, Stadtman ER. Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life. 2000;50:301-7. doi: 10.1080/713803735. PubMed PMID: 11327324.
  63. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142. doi: 10.3389/fphys.2012.00142. PubMed PMID: 22629249; PubMed Central PMCID: PMCPMC3355468.
  64. Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42-97. PubMed PMID: 22876722.
  65. Yimcharoen M, Kittikunnathum S, Suknikorn C, Nak-On W, Yeethong P, Anthony TG, et al. Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J Int Soc Sports Nutr. 2019;16:2. doi: 10.1186/s12970-019-0269-8. PubMed PMID: 30665439; PubMed Central PMCID: PMCPMC6341721.
  66. Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165823. doi: 10.1016/j.bbadis.2020.165823. PubMed PMID: 32360589; PubMed Central PMCID: PMCPMC7188661.
  67. White G, Caterini JE. Cold water immersion mechanisms for recovery following exercise: cellular stress and inflammation require closer examination. J Physiol. 2017;595:631-2. doi: 10.1113/JP273659. PubMed PMID: 28145015; PubMed Central PMCID: PMCPMC5285611.
  68. Abaidia AE, Lamblin J, Delecroix B, Leduc C, McCall A, Nedelec M, et al. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy. Int J Sports Physiol Perform. 2017;12:402-9. doi: 10.1123/ijspp.2016-0186. PubMed PMID: 27396361.
  69. White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extrem Physiol Med. 2013;2:26. doi: 10.1186/2046-7648-2-26. PubMed PMID: 24004719; PubMed Central PMCID: PMCPMC3766664.
  70. Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81-82:209-30. doi: 10.1093/bmb/ldm014. PubMed PMID: 17569697.
  71. Romagnoli M, Alis R, Aloe R, Salvagno GL, Basterra J, Pareja-Galeano H, et al. Influence of training and a maximal exercise test in analytical variability of muscular, hepatic, and cardiovascular biochemical variables. Scand J Clin Lab Invest. 2014;74:192-8. doi: 10.3109/00365513.2013.873948. PubMed PMID: 24484196.
  72. Reichel T, Bosslau TK, Palmowski J, Eder K, Ringseis R, Mooren FC, et al. Reliability and suitability of physiological exercise response and recovery markers. Sci Rep. 2020;10:11924. doi: 10.1038/s41598-020-69280-9. PubMed PMID: 32681124; PubMed Central PMCID: PMCPMC7368084.
  73. Fonseca LB, Brito CJ, Silva RJ, Silva-Grigoletto ME, da Silva WMJ, Franchini E. Use of Cold-Water Immersion to Reduce Muscle Damage and Delayed-Onset Muscle Soreness and Preserve Muscle Power in Jiu-Jitsu Athletes. J Athl Train. 2016;51:540-9. doi: 10.4085/1062-6050-51.9.01. PubMed PMID: 27575565; PubMed Central PMCID: PMCPMC5317190.
  74. Rubio-Arias JA, Avila-Gandia V, Lopez-Roman FJ, Soto-Mendez F, Alcaraz PE, Ramos-Campo DJ. Muscle damage and inflammation biomarkers after two ultra-endurance mountain races of different distances: 54 km vs 111  Physiol Behav. 2019;205:51-7. doi: 10.1016/j.physbeh.2018.10.002. PubMed PMID: 30291850.
  75. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30:142-50. doi: 10.1016/j.tibs.2005.01.005. PubMed PMID: 15752986.
  76. Bernat-Adell MD, Collado-Boira EJ, Moles-Julio P, Panizo-Gonzalez N, Martinez-Navarro I, Hernando-Fuster B, et al. Recovery of Inflammation, Cardiac, and Muscle Damage Biomarkers After Running a Marathon. J Strength Cond Res. 2021;35:626-32. doi: 10.1519/JSC.0000000000003167. PubMed PMID: 31045685.
  77. Brancaccio P, Limongelli FM, Maffulli N. Monitoring of serum enzymes in sport. Br J Sports Med. 2006;40:96-7. doi: 10.1136/bjsm.2005.020719. PubMed PMID: 16431993; PubMed Central PMCID: PMCPMC2492050.
  78. Nielsen HG, Oktedalen O, Opstad PK, Lyberg T. Plasma Cytokine Profiles in Long-Term Strenuous Exercise. J Sports Med (Hindawi Publ Corp). 2016;2016:7186137. doi: 10.1155/2016/7186137. PubMed PMID: 27239554; PubMed Central PMCID: PMCPMC4864530.
  79. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31. PubMed PMID: 11579746.
  80. Accattato F, Greco M, Pullano SA, Care I, Fiorillo AS, Pujia A, et al. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS One. 2017;12:e0178900. doi: 10.1371/journal.pone.0178900. PubMed PMID: 28582461; PubMed Central PMCID: PMCPMC5459463.
  81. Kawamura T, Muraoka I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel). 2018;7. doi: 10.3390/antiox7090119. PubMed PMID: 30189660; PubMed Central PMCID: PMCPMC6162669.
  82. Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5:356-77. doi: 10.3390/biom5020356. PubMed PMID: 25866921; PubMed Central PMCID: PMCPMC4496677.
  83. Ammar A, Trabelsi K, Boukhris O, Glenn JM, Bott N, Masmoudi L, et al. Effects of Aerobic-, Anaerobic- and Combined-Based Exercises on Plasma Oxidative Stress Biomarkers in Healthy Untrained Young Adults. Int J Environ Res Public Health. 2020;17. doi: 10.3390/ijerph17072601. PubMed PMID: 32290148; PubMed Central PMCID: PMCPMC7178085.
  84. Sutkowy P, Wozniak A, Mila-Kierzenkowska C, Szewczyk-Golec K, Wesolowski R, Pawlowska M, et al. Physical Activity vs. Redox Balance in the Brain: Brain Health, Aging and Diseases. Antioxidants (Basel). 2021;11. doi: 10.3390/antiox11010095. PubMed PMID: 35052600; PubMed Central PMCID: PMCPMC8773223.
  85. Bosco G, Paganini M, Giacon TA, Oppio A, Vezzoli A, Dellanoce C, et al. Oxidative Stress and Inflammation, MicroRNA, and Hemoglobin Variations after Administration of Oxygen at Different Pressures and Concentrations: A Randomized Trial. Int J Environ Res Public Health. 2021;18. doi: 10.3390/ijerph18189755. PubMed PMID: 34574676; PubMed Central PMCID: PMCPMC8468581.
  86. Souissi W, Bouzid MA, Farjallah MA, Ben Mahmoud L, Boudaya M, Engel FA, et al. Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes. Int J Environ Res Public Health. 2020;17. doi: 10.3390/ijerph17103729. PubMed PMID: 32466187; PubMed Central PMCID: PMCPMC7277356.
  87. Silva MA, Carvalho TR, Cruz AC, Jesus LR, Silva Neto LA, Trajano ET, et al. Effect of time-dependent cryotherapy on redox balance of quadriceps injuries. Cryobiology. 2016;72:1-6. doi: 10.1016/j.cryobiol.2016.01.001. PubMed PMID: 26769009.
  88. Takagi R, Fujita N, Arakawa T, Kawada S, Ishii N, Miki A. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats. J Appl Physiol (1985). 2011;110:382-8. doi: 10.1152/japplphysiol.01187.2010. PubMed PMID: 21164157.
  89. Wozniak A, Wozniak B, Drewa G, Mila-Kierzenkowska C, Rakowski A. The effect of whole-body cryostimulation on lysosomal enzyme activity in kayakers during training. Eur J Appl Physiol. 2007;100:137-42. doi: 10.1007/s00421-007-0404-0. PubMed PMID: 17458576.
  90. Kloska A, Tylki-Szymanska A, Wegrzyn G. Lysosomal storage diseases--an overview]. Postepy Biochem. 2011;57:128-32. PubMed PMID: 21913413.
  91. Sutkowy P, Woźniak A, Mila-Kierzenkowska C, Jurecka A. The activity of lysosomal enzymes in the healthy men’s blood after single Finnish sauna procedure–preliminary study. Medical and Biological Sciences. 2012;26:33-8. doi: 10.2478/v10251-012-0052-4.
  92. Mila-Kierzenkowska C, Woźniak A, Boraczyński T, Jurecka A, Augustyńska B, Woźniak B. The effect of whole-body cryostimulation on the activity of lysosomal enzymes in kayaker women after intense exercise. Journal of Thermal Biology. 2011;36:29-33. doi: 10.1016/j.jtherbio.2010.10.001.
  93. Pawlowska M, Mila-Kierzenkowska C, Boraczynski T, Boraczynski M, Szewczyk-Golec K, Sutkowy P, et al. The Effect of Submaximal Exercise Followed by Short-Term Cold-Water Immersion on the Inflammatory State in Healthy Recreational Athletes: A Cross-Over Study. J Clin Med. 2021;10. doi: 10.3390/jcm10184239. PubMed PMID: 34575347; PubMed Central PMCID: PMCPMC8468461.
  94. Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33:745-64. doi: 10.1177/0363546505274714. PubMed PMID: 15851777.
  95. Wigmore SJ, Fearon KC, Ross JA, McNally SJ, Welch WJ, Garden OJ. Febrile-range temperature but not heat shock augments the acute phase response to interleukin-6 in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol. 2006;290:G903-11. doi: 10.1152/ajpgi.00089.2005. PubMed PMID: 16339299.
  96. Kellici TF, Pilka ES, Bodkin MJ. Small-molecule modulators of serine protease inhibitor proteins (serpins). Drug Discov Today. 2021;26:442-54. doi: 10.1016/j.drudis.2020.11.012. PubMed PMID: 33259801.
  97. Vassalle C, Masotti S, Lubrano V, Basta G, Prontera C, Di Cecco P, et al. Traditional and new candidate cardiac biomarkers assessed before, early, and late after half marathon in trained subjects. Eur J Appl Physiol. 2018;118:411-7. doi: 10.1007/s00421-017-3783-x. PubMed PMID: 29256048.
  98. Markovitch D, Tyrrell RM, Thompson D. The effect of prior exercise on ex vivo induction of heme oxygenase-1 in human lymphocytes. Free Radic Res. 2007;41:1125-34. doi: 10.1080/10715760701589230. PubMed PMID: 17886034.
  99. Semple SJ, Smith LL, McKune AJ, Hoyos J, Mokgethwa B, San Juan AF, et al. Serum concentrations of C reactive protein, alpha1 antitrypsin, and complement (C3, C4, C1 esterase inhibitor) before and during the Vuelta a Espana. Br J Sports Med. 2006;40:124-7. doi: 10.1136/bjsm.2005.019489. PubMed PMID: 16431998; PubMed Central PMCID: PMCPMC2492037.
  100. Schild M, Eichner G, Beiter T, Zugel M, Krumholz-Wagner I, Hudemann J, et al. Effects of Acute Endurance Exercise on Plasma Protein Profiles of Endurance-Trained and Untrained Individuals over Time. Mediators Inflamm. 2016;2016:4851935. doi: 10.1155/2016/4851935. PubMed PMID: 27239103; PubMed Central PMCID: PMCPMC4867072.
  101. Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol. 2022;54:102374. doi: 10.1016/j.redox.2022.102374. PubMed PMID: 35738088; PubMed Central PMCID: PMCPMC9233275.
  102. Inal M, Akyuz F, Turgut A, Getsfrid WM. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med Sci Sports Exerc. 2001;33:564-7. doi: 10.1097/00005768-200104000-00009. PubMed PMID: 11283431.
  103. Bouzid MA, Filaire E, Matran R, Robin S, Fabre C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int J Sports Med. 2018;39:21-8. doi: 10.1055/s-0043-119882. PubMed PMID: 29169189.
  104. Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology (Basel). 2021;10. doi: 10.3390/biology10121272. PubMed PMID: 34943187; PubMed Central PMCID: PMCPMC8698973.
  105. Castrogiovanni P, Imbesi R. Oxidative stress and skeletal muscle in exercise. Ital J Anat Embryol. 2012;117:107-17. PubMed PMID: 23420998.
  106. Slattery K, Bentley D, Coutts AJ. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med. 2015;45:453-71. doi: 10.1007/s40279-014-0282-7. PubMed PMID: 25398224.
  107. Borges L, Dermargos A, Gray S, Barros Silva MB, Santos V, Pithon-Curi TC, et al. Neutrophil Migration and Adhesion Molecule Expression after Acute High-Intensity Street Dance Exercise. J Immunol Res. 2018;2018:1684013. doi: 10.1155/2018/1684013. PubMed PMID: 30069484; PubMed Central PMCID: PMCPMC6057282.
  108. Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64-85. PubMed PMID: 16385845.
  109. Andersson H, Bohn SK, Raastad T, Paulsen G, Blomhoff R, Kadi F. Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scand J Med Sci Sports. 2010;20:740-7. doi: 10.1111/j.1600-0838.2009.00989.x. PubMed PMID: 19765242.
  110. Suzuki K. Cytokine response to exercise and its modulation. Antioxidants. 2018;7:17. doi: 10.3390/antiox7010017. PubMed Central PMCID: PMC5789327.
  111. Kouvelioti R, Kurgan N, Falk B, Ward WE, Josse AR, Klentrou P. Cytokine and Sclerostin Response to High-Intensity Interval Running versus Cycling. Med Sci Sports Exerc. 2019;51:2458-64. doi: 10.1249/MSS.0000000000002076. PubMed PMID: 31246713.
  112. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985). 2017;122:559-70. doi: 10.1152/japplphysiol.00971.2016. PubMed PMID: 28035017.
  113. Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016;94:140-5. doi: 10.1038/icb.2015.97. PubMed PMID: 26526620.
  114. Crameri RM, Langberg H, Magnusson P, Jensen CH, Schroder HD, Olesen JL, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558:333-40. doi: 10.1113/jphysiol.2004.061846. PubMed PMID: 15121802; PubMed Central PMCID: PMCPMC1664917.
  115. Gomarasca M, Banfi G, Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem. 2020;94:155-218. doi: 10.1016/bs.acc.2019.07.010. PubMed PMID: 31952571.
  116. Laurens C, Bergouignan A, Moro C. Exercise-Released Myokines in the Control of Energy Metabolism. Front Physiol. 2020;11:91. doi: 10.3389/fphys.2020.00091. PubMed PMID: 32116795; PubMed Central PMCID: PMCPMC7031345.
  117. Rashid FA, Abbas HJ, Naser NA, Addai Ali H. Effect of Long-Term Moderate Physical Exercise on Irisin between Normal Weight and Obese Men. ScientificWorldJournal. 2020;2020:1897027. doi: 10.1155/2020/1897027. PubMed PMID: 32952453; PubMed Central PMCID: PMCPMC7481929.
  118. Sousa RAL, Improta-Caria AC, Souza BSF. Exercise-Linked Irisin: Consequences on Mental and Cardiovascular Health in Type 2 Diabetes. Int J Mol Sci. 2021;22. doi: 10.3390/ijms22042199. PubMed PMID: 33672171; PubMed Central PMCID: PMCPMC7926886.
  119. Fatouros IG. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. Clin Chem Lab Med. 2018;56:525-48. doi: 10.1515/cclm-2017-0674. PubMed PMID: 29127759.
  120. Fox J, Rioux BV, Goulet EDB, Johanssen NM, Swift DL, Bouchard DR, et al. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: A meta-analysis. Scand J Med Sci Sports. 2018;28:16-28. doi: 10.1111/sms.12904. PubMed PMID: 28453881.
  121. Zhao J, Qiao L, Dong J, Wu R. Antioxidant Effects of Irisin in Liver Diseases: Mechanistic Insights. Oxid Med Cell Longev. 2022;2022:3563518. doi: 10.1155/2022/3563518. PubMed PMID: 35035659; PubMed Central PMCID: PMCPMC8759828.
  122. Joro R, Korkmaz A, Lakka TA, Uusitalo ALT, Atalay M. Plasma irisin and its associations with oxidative stress in athletes suffering from overtraining syndrome. Physiol Int. 2020;107:513-26. doi: 10.1556/2060.2020.00037. PubMed PMID: 33393937.
  123. Karalaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: cellular and molecular events. In Vivo. 2009;23:779-96. PubMed PMID: 19779115.
  124. Peake JM, Roberts LA, Figueiredo VC, Egner I, Krog S, Aas SN, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595:695-711. doi: 10.1113/JP272881. PubMed PMID: 27704555; PubMed Central PMCID: PMCPMC5285720.
  125. Bessa AL, Oliveira VN, Agostini GG, Oliveira RJ, Oliveira AC, White GE, et al. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res. 2016;30:311-9. doi: 10.1519/JSC.0b013e31828f1ee9. PubMed PMID: 23604000.