Iranian Journal of Medical Sciences

Document Type : Original Article(s)


1 Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq

2 Ministry of Science and Technology, Baghdad, Iraq



Background: The methylenetetrahydrofolate reductase (MTHFR) gene is an essential gene in the metabolism of folate-homocysteine. Recently, the level of homocysteine was found to be a significant marker in the follow-up of COVID-19 infection. Thus, this study aimed to detect the effect of genetic polymorphisms for single nucleotide polymorphisms (SNPs) (c.66A>G, c.1298A>C, and c.677CT) on COVID-19 infection. 
Methods: Blood samples were collected from 270 patients with COVID-19 in the medical center of Al-Shifa (Baghdad, Iraq) from November 2020 to March 2021. Tetra-primer amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique was used for the detection of genotypes of SNPs. The odds ratio (OR) was used to detect the relationship between SNPs and COVID-19 infections. Haplotype analysis was performed by SHEsis software.
Results: There was a significant difference between mild/moderate cases and severe/critical cases for ages (35-45), (46-55), and (56-65) years (P<0.0001, P=0.01, and P=0.006, respectively). The results showed significant differences in the T allele for SNP c.677>C (P<0.0001 and OR=4.58). The C allele for SNP c.1298A>C indicated significant differences (P<0.001 and OR=3.15). Besides, the G allele for SNP c.677C>T showed significant differences (P<0.001 and OR=6.64). Consequently, these SNPs showed a predisposition to the development of COVID-19 infection. With regard to the C-A-A, T-A-A and T-C-G haplotypes indicated significant differences between the control and patient groups. The C-A-A was related to a decreased risk and indicated the protection effect with COVID-19 infection development (P<0.0001 and OR=0.218). The increased risk was associated with T-A-A and T-C-G haplotypes and indicated the risk impact with COVID-19 infection development (P<0.0001, P=0.004, and OR=15.5, OR=6.772, respectively). Furthermore, the linkage disequilibrium (LD) for SNPs was studied, and the complete D’ value was 99%.
Conclusion: The genetic polymorphisms of SNPs (c.66A>G, c.1298A>C, and c.677C>T) in the Iraqi population were associated with COVID-19 infection.


  1. Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus. 2020;12:e7560. doi: 10.7759/cureus.7560. PubMed PMID: 32269893; PubMed Central PMCID: PMCPMC7138423.
  2. Alsaffar DF, Yaseen A, Jabal G. In silico molecular docking studies of medicinal arabic plant-based bioactive compounds as a promising drug candidate against COVID-19. Int J Innov Sci Res Technol. 2020;5:876-96.
  3. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. doi: 10.1186/s40779-020-00240-0. PubMed PMID: 32169119; PubMed Central PMCID: PMCPMC7068984.
  4. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574-81. doi: 10.1001/jama.2020.5394. PubMed PMID: 32250385; PubMed Central PMCID: PMCPMC7136855.
  5. Ajbar AM, Ali E, Ajbar A. Modelling the evolution of the coronavirus disease (COVID-19) in Saudi Arabia. J Infect Dev Ctries. 2021;15:918-24. doi: 10.3855/jidc.13568. PubMed PMID: 34343116.
  6. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020;81:e16-e25. doi: 10.1016/j.jinf.2020.04.021. PubMed PMID: 32335169; PubMed Central PMCID: PMCPMC7177098.
  7. Abdi M. Coronavirus disease 2019 (COVID-19) outbreak in Iran: Actions and problems. Infect Control Hosp Epidemiol. 2020;41:754-5. doi: 10.1017/ice.2020.86. PubMed PMID: 32192541; PubMed Central PMCID: PMCPMC7137533.
  8. Al-Jumaili MHA. The Impact of COVID-19 on Iraqi Community: a descriptive study based on data reported from the Ministry of Health in Iraq. J Infect Dev Ctries. 2021;15:1244-51. doi: 10.3855/jidc.15010. PubMed PMID: 34669591.
  9. Khan KM, Jialal I. Folic Acid Deficiency. Treasure Island (FL) ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships with ineligible companies. 2024. PMID: 30570998.
  10. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. doi: 10.1186/1475-2891-14-6. PubMed PMID: 25577237; PubMed Central PMCID: PMCPMC4326479.
  11. Dhingra R, Vasan RS. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc Med. 2017;27:123-33. doi: 10.1016/j.tcm.2016.07.005. PubMed PMID: 27576060; PubMed Central PMCID: PMCPMC5253084.
  12. Pinzon RT, Wijaya VO, Veronica V. The role of homocysteine levels as a risk factor of ischemic stroke events: a systematic review and meta-analysis. Front Neurol. 2023;14:1144584. doi: 10.3389/fneur.2023.1144584. PubMed PMID: 37251231; PubMed Central PMCID: PMCPMC10216881.
  13. Lagana AS, Chiantera V, Gerli S, Proietti S, Lepore E, Unfer V, et al. Preventing Persistence of HPV Infection with Natural Molecules. Pathogens. 2023;12. doi: 10.3390/pathogens12030416. PubMed PMID: 36986338; PubMed Central PMCID: PMCPMC10056139.
  14. Roblin X, Pofelski J, Zarski JP. [Steatosis, chronic hepatitis virus C infection and homocysteine]. Gastroenterol Clin Biol. 2007;31:415-20. doi: 10.1016/s0399-8320(07)89402-4. PubMed PMID: 17483780.
  15. Keskin A, G UU, Aci R, Duran U. Homocysteine as a marker for predicting disease severity in patients with COVID-19. Biomark Med. 2022;16:559-68. doi: 10.2217/bmm-2021-0688. PubMed PMID: 35343243.
  16. Nefic H, Mackic-Djurovic M, Eminovic I. The Frequency of the 677C>T and 1298A>C Polymorphisms in the Methylenetetrahydrofolate Reductase (MTHFR) Gene in the Population. Med Arch. 2018;72:164-9. doi: 10.5455/medarh.2018.72.164-169. PubMed PMID: 30061759; PubMed Central PMCID: PMCPMC6021155.
  17. Gautam KA, Raghav A, Sankhwar SN, Singh R, Tripathi P. Genetic Polymorphisms of Gene Methionine Synthase Reductase (MTRR) and Risk of Urinary Bladder Cancer. Asian Pac J Cancer Prev. 2023;24:1137-41. doi: 10.31557/APJCP.2023.24.4.1137. PubMed PMID: 37116134; PubMed Central PMCID: PMCPMC10352732.
  18. Chatterjee M, Saha T, Maitra S, Sinha S, Mukhopadhyay K. Folate System Gene Variant rs1801394 66A>G may have a Causal Role in Down Syndrome in the Eastern Indian Population. Int J Mol Cell Med. 2020;9:215-24. doi: 10.22088/IJMCM.BUMS.9.3.215. PubMed PMID: 33274184; PubMed Central PMCID: PMCPMC7703665.
  19. Lajin B, Alachkar A, Sakur AA. Triplex tetra-primer ARMS-PCR method for the simultaneous detection of MTHFR c.677C>T and c.1298A>C, and MTRR c.66A>G polymorphisms of the folate-homocysteine metabolic pathway. Mol Cell Probes. 2012;26:16-20. doi: 10.1016/j.mcp.2011.10.005. PubMed PMID: 22074746.
  20. Organization WH. Clinical Management of COVID-19: Interim Guidance. Geneva: World Health Organization; 2020. p. 13-5.
  21. Abramson JH. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov. 2011;8:1. doi: 10.1186/1742-5573-8-1. PubMed PMID: 21288353; PubMed Central PMCID: PMCPMC3041648.
  22. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis ( Cell Res. 2009;19:519-23. doi: 10.1038/cr.2009.33. PubMed PMID: 19290020.
  23. Bauer P, Brugger J, Konig F, Posch M. An international comparison of age and sex dependency of COVID-19 deaths in 2020: a descriptive analysis. Sci Rep. 2021;11:19143. doi: 10.1038/s41598-021-97711-8. PubMed PMID: 34580322; PubMed Central PMCID: PMCPMC8476584.
  24. Al-Bayati AM, Alwan AH, Fadhil HY. Potential role of TLR3 and RIG-I genes expression in surviving covid-19 patients with different severity of infection. Iraqi Journal of Science. 2022:2873-83. doi: 10.24996/ijs.2022.63.7.11.
  25. Mahmood ZS, Fadhil HY, Abdul Hussein TA, Ad’hiah AH. Severity of coronavirus disease 19: Profile of inflammatory markers and ACE (rs4646994) and ACE2 (rs2285666) gene polymorphisms in Iraqi patients. Meta Gene. 2022;31:101014. doi: 10.1016/j.mgene.2022.101014. PubMed PMID: 35036327; PubMed Central PMCID: PMCPMC8744396.
  26. Mahmood ZS, Fadhil HY, Ad AH. Estimation of hematological parameters of disease severity in Iraqi patients with COVID-19. Iraqi Journal of Science. 2021:3487-96. doi: 10.24996/ijs.2021.62.10.8.
  27. Whiteman A, Wang A, McCain K, Gunnels B, Toblin R, Lee JT, et al. Demographic and Social Factors Associated with COVID-19 Vaccination Initiation Among Adults Aged >/=65 Years - United States, December 14, 2020-April 10, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:725-30. doi: 10.15585/mmwr.mm7019e4. PubMed PMID: 33983911; PubMed Central PMCID: PMCPMC8118148.
  28. Zheng F, Liao C, Fan QH, Chen HB, Zhao XG, Xie ZG, et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. 2020;40:275-80. doi: 10.1007/s11596-020-2172-6. PubMed PMID: 32207032; PubMed Central PMCID: PMCPMC7095065.
  29. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-42. doi: 10.1001/jama.2020.2648. PubMed PMID: 32091533.
  30. Tan C, Zhang H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun. 2015;6:7873. doi: 10.1038/ncomms8873. PubMed PMID: 26303763; PubMed Central PMCID: PMCPMC4560752.
  31. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-4. doi: 10.1016/S0140-6736(20)30628-0. PubMed PMID: 32192578; PubMed Central PMCID: PMCPMC7270045.
  32. Lim S, Shin SM, Nam GE, Jung CH, Koo BK. Proper Management of People with Obesity during the COVID-19 Pandemic. J Obes Metab Syndr. 2020;29:84-98. doi: 10.7570/jomes20056. PubMed PMID: 32544885; PubMed Central PMCID: PMCPMC7338495.
  33. Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne). 2021;12:731974. doi: 10.3389/fendo.2021.731974. PubMed PMID: 34690930; PubMed Central PMCID: PMCPMC8527093.
  34. Abu-Farha M, Al-Sabah S, Hammad MM, Hebbar P, Channanath AM, John SE, et al. Prognostic Genetic Markers for Thrombosis in COVID-19 Patients: A Focused Analysis on D-Dimer, Homocysteine and Thromboembolism. Front Pharmacol. 2020;11:587451. doi: 10.3389/fphar.2020.587451. PubMed PMID: 33362545; PubMed Central PMCID: PMCPMC7756688.
  35. Karst M, Hollenhorst J, Achenbach J. Life-threatening course in coronavirus disease 2019 (COVID-19): Is there a link to methylenetetrahydrofolic acid reductase (MTHFR) polymorphism and hyperhomocysteinemia? Med Hypotheses. 2020;144:110234. doi: 10.1016/j.mehy.2020.110234. PubMed PMID: 33254541; PubMed Central PMCID: PMCPMC7467063.
  36. Sezer O, Gunal O, Aci R, Keskin A. Possible effect of genetic background in thrombophilia genes on clinical severity of patients with coronavirus disease-2019: A prospective cohort study. Baghdad Journal of Biochemistry and Applied Biological Sciences. 2022;3:183-99. doi: 10.47419/bjbabs.v3i03.141.
  37. Ponti G, Pastorino L, Manfredini M, Ozben T, Oliva G, Kaleci S, et al. COVID-19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J Clin Lab Anal. 2021;35:e23798. doi: 10.1002/jcla.23798. PubMed PMID: 34061414; PubMed Central PMCID: PMCPMC8209953.
  38. Levin BL, Varga E. MTHFR: Addressing Genetic Counseling Dilemmas Using Evidence-Based Literature. J Genet Couns. 2016;25:901-11. doi: 10.1007/s10897-016-9956-7. PubMed PMID: 27130656.
  39. Zhou Y, Sinnathamby V, Yu Y, Sikora L, Johnson CY, Mossey P, et al. Folate intake, markers of folate status and oral clefts: An updated set of systematic reviews and meta-analyses. Birth Defects Res. 2020;112:1699-719. doi: 10.1002/bdr2.1827. PubMed PMID: 33118705.
  40. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58:1-10. doi: 10.1016/j.ejmg.2014.10.004. PubMed PMID: 25449138.
  41. Ni J, Zhang L, Zhou T, Xu WJ, Xue JL, Cao N, et al. Association between the MTHFR C677T polymorphism, blood folate and vitamin B12 deficiency, and elevated serum total homocysteine in healthy individuals in Yunnan Province, China. J Chin Med Assoc. 2017;80:147-53. doi: 10.1016/j.jcma.2016.07.005. PubMed PMID: 28094233.
  42. Allen LH, Miller JW, de Groot L, Rosenberg IH, Smith AD, Refsum H, et al. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 Review. J Nutr. 2018;148:1995S-2027S. doi: 10.1093/jn/nxy201. PubMed PMID: 30500928; PubMed Central PMCID: PMCPMC6297555.