Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Anatomy and Embryology, College of Medicine, Zagazig University, Al-Sharquia, Egypt

2 Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, Egypt

3 Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt

4 Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya

5 Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia

6 Department of Pathology, College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia

7 Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Saudi Arabia

8 Department of Biochemistry, College of Science and Art, King Abdelaziz University, Jeddah, Kingdom of Saudi Arabia

9 Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Saudi Arabia

10.30476/ijms.2024.99442.3152

Abstract

Background: The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function. This study investigated whether adropin is associated with renal and cardiovascular outcomes after using ACEI treatment in CKD rats.  
Methods: In 2021, in Zagazig, Egypt, rats were assigned to: GI, control group (n=8); GII, CKD group (n=8), and GIII, CKD+captopril group (n=8), in which CKD rats received 100 mg/Kg/day captopril orally. Adropin levels, renal function, blood pressure, and various CVD risk factors were measured. Renal, cardiac, and aortic tissues were examined histologically and immunohistochemically to detect the expression of vascular endothelial growth factor receptor-2 (VEGFR-2). To analyze data, ANOVA and Pearson’s correlation tests were used (SPSS version 18, P<0.05 is significant).
Results: Adropin was significantly lower in GII than in GI and GIII (P<0.001). Adropin in GII and GIII was negatively correlated with atherogenic index (P=0.019 and P=0.001, respectively), atherogenic co-efficient (P=0.012 and P=0.013, respectively), troponin I (P=0.021 and P=0.043, respectively), and nitric oxide (P=0.025 and P=0.038, respectively). VEGFR-2 expression decreased in GII and was elevated in GIII (P<0.001).
Conclusion: Adropin levels were significantly correlated with most CVD risk factors in CKD and captopril-treated CKD rats, indicating a role for adropin in the pathogenesis of CVD in CKD. It also refers to its implication in the ameliorative effect of ACEI treatment, possibly by affecting VEGFR-2 and nitric oxide release.

Keywords

  1. Beldhuis IE, Lam CSP, Testani JM, Voors AA, Van Spall HGC, Ter Maaten JM, et al. Evidence-Based Medical Therapy in Patients With Heart Failure With Reduced Ejection Fraction and Chronic Kidney Disease. Circulation. 2022;145:693-712. doi: 10.1161/CIRCULATIONAHA.121.052792. PubMed PMID: 35226558; PubMed Central PMCID: PMCPMC9074837.
  2. Fujii H, Kono K, Nishi S. Characteristics of coronary artery disease in chronic kidney disease. Clin Exp Nephrol. 2019;23:725-32. doi: 10.1007/s10157-019-01718-5. PubMed PMID: 30830548; PubMed Central PMCID: PMCPMC6511359.
  3. Berezina TA, Obradovic Z, Boxhammer E, Berezin AA, Lichtenauer M, Berezin AE. Adropin Predicts Chronic Kidney Disease in Type 2 Diabetes Mellitus Patients with Chronic Heart Failure. J Clin Med. 2023;12. doi: 10.3390/jcm12062231. PubMed PMID: 36983232; PubMed Central PMCID: PMCPMC10059962.
  4. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol. 2014;4:1201-28. doi: 10.1002/cphy.c130040. PubMed PMID: 24944035; PubMed Central PMCID: PMCPMC4137912.
  5. Casare FA, Thieme K, Costa-Pessoa JM, Rossoni LV, Couto GK, Fernandes FB, et al. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Renal Physiol. 2016;310:F1295-307. doi: 10.1152/ajprenal.00471.2015. PubMed PMID: 26962104.
  6. Mikrut K, Kupsz J, Kozlik J, Krauss H, Pruszynska-Oszmalek E, Gibas-Dorna M. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors. Croat Med J. 2016;57:371-80. doi: 10.3325/cmj.2016.57.371. PubMed PMID: 27586552; PubMed Central PMCID: PMCPMC5048232.
  7. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage. 2012;20:256-60. doi: 10.1016/j.joca.2012.02.010. PubMed PMID: 22424462.
  8. Long DA, Woolf AS, Suda T, Yuan HT. Increased renal angiopoietin-1 expression in folic acid-induced nephrotoxicity in mice. J Am Soc Nephrol. 2001;12:2721-31. doi: 10.1681/ASN.V12122721. PubMed PMID: 11729241.
  9. Hrenak J, Arendasova K, Rajkovicova R, Aziriova S, Repova K, Krajcirovicova K, et al. Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res. 2013;62:S181-9. doi: 10.33549/physiolres.932614. PubMed PMID: 24329698.
  10. Parasuraman S, Raveendran R. Measurement of invasive blood pressure in rats. J Pharmacol Pharmacother. 2012;3:172-7. doi: 10.4103/0976-500X.95521. PubMed PMID: 22629093; PubMed Central PMCID: PMCPMC3356959.
  11. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38:1933-53. PubMed PMID: 1394976.
  12. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-9. doi: 10.1007/BF00280883. PubMed PMID: 3899825.
  13. Orsolic N, Landeka Jurcevic I, Dikic D, Rogic D, Odeh D, Balta V, et al. Effect of Propolis on Diet-Induced Hyperlipidemia and Atherogenic Indices in Mice. Antioxidants (Basel). 2019;8. doi: 10.3390/antiox8060156. PubMed PMID: 31163593; PubMed Central PMCID: PMCPMC6617317.
  14. Cortas NK, Wakid NW. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem. 1990;36:1440-3. PubMed PMID: 2387039.
  15. Alabiad MA, Harb OA, Hefzi N, Ahmed RZ, Osman G, Shalaby AM, et al. Prognostic and clinicopathological significance of TMEFF2, SMOC-2, and SOX17 expression in endometrial carcinoma. Exp Mol Pathol. 2021;122:104670. doi: 10.1016/j.yexmp.2021.104670. PubMed PMID: 34339705.
  16. Ahmed MM, Gebriel MG, Morad EA, Saber IM, Elwan A, Salah M, et al. Expression of Immune Checkpoint Regulators, Cytotoxic T-Lymphocyte Antigen-4, and Programmed Death-Ligand 1 in Epstein-Barr Virus-associated Nasopharyngeal Carcinoma. Appl Immunohistochem Mol Morphol. 2021;29:401-8. doi: 10.1097/PAI.0000000000000903. PubMed PMID: 33480605.
  17. Alabiad MA, Harb OA, Taha HF, El Shafaay BS, Gertallah LM, Salama N. Prognostic and Clinic-Pathological Significances of SCF and COX-2 Expression in Inflammatory and Malignant Prostatic Lesions. Pathol Oncol Res. 2019;25:611-24. doi: 10.1007/s12253-018-0534-1. PubMed PMID: 30402808.
  18. Alabiad M, Harb O, Mandour D, Hemeda R, R ZA, El-Taher A, et al. Prognostic and clinicopathological implications of expression of Beclin-1 and hypoxia-inducible factor 1alpha in serous ovarian carcinoma: an immunohistochemical study. Pol J Pathol. 2021;72:23-38. doi: 10.5114/pjp.2021.106441. PubMed PMID: 34060285.
  19. Suvarna KS, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques E-Book. Alpharetta: Elsevier health sciences; 2018.
  20. Elsalam SA, Mansor AE, Sarhan MH, Shalaby AM, Gobran MA, Alabiad MA. Evaluation of Apoptosis, Proliferation, and Adhesion Molecule Expression in Trophoblastic Tissue of Women With Recurrent Spontaneous Abortion and Infected With Toxoplasma gondii. Int J Gynecol Pathol. 2021;40:124-33. doi: 10.1097/PGP.0000000000000683. PubMed PMID: 32833877.
  21. Khayal EE, Alabiad MA, Elkholy MR, Shalaby AM, Nosery Y, El-Sheikh AA. The immune modulatory role of marjoram extract on imidacloprid induced toxic effects in thymus and spleen of adult rats. Toxicology. 2022;471:153174. doi: 10.1016/j.tox.2022.153174. PubMed PMID: 35398170.
  22. Shalaby AM, Alnasser SM, Ahmed Khairy D, Alabiad MA, Alorini M, Jaber FA, et al. The neuroprotective effect of ginsenoside Rb1 on the cerebral cortex changes induced by aluminium chloride in a mouse model of Alzheimer’s disease: A histological, immunohistochemical, and biochemical study. J Chem Neuroanat. 2023;129:102248. doi: 10.1016/j.jchemneu.2023.102248. PubMed PMID: 36764334.
  23. Paradis V, Lagha NB, Zeimoura L, Blanchet P, Eschwege P, Ba N, et al. Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch. 2000;436:351-6. doi: 10.1007/s004280050458. PubMed PMID: 10834538.
  24. Akcilar R, Kocak FE, Simsek H, Akcilar A, Bayat Z, Ece E, et al. Antidiabetic and hypolipidemic effects of adropinin streoptozotocin-induced type 2 diabetic rats. Bratisl Lek Listy. 2016;117:100-5. doi: 10.4149/bll_2016_020. PubMed PMID: 26830041.
  25. Kume T, Calan M, Yilmaz O, Kocabas GU, Yesil P, Temur M, et al. A possible connection between tumor necrosis factor alpha and adropin levels in polycystic ovary syndrome. J Endocrinol Invest. 2016;39:747-54. doi: 10.1007/s40618-016-0453-5. PubMed PMID: 26969461.
  26. Kaluzna M, Pawlaczyk K, Schwermer K, Hoppe K, Czlapka-Matyasik M, Ibrahim AY, et al. Adropin and irisin: New biomarkers of cardiac status in patients with end-stage renal disease? A preliminary study. Adv Clin Exp Med. 2019;28:347-53. doi: 10.17219/acem/81538. PubMed PMID: 30525316.
  27. Ancion A, Tridetti J, Nguyen Trung ML, Oury C, Lancellotti P. A Review of the Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of Angiotensin-Converting Enzyme Inhibitors: Focus on Perindopril. Cardiol Ther. 2019;8:179-91. doi: 10.1007/s40119-019-00150-w. PubMed PMID: 31578675; PubMed Central PMCID: PMCPMC6828891.
  28. Reddy YS, Kiranmayi VS, Bitla AR, Krishna GS, Rao PV, Sivakumar V. Nitric oxide status in patients with chronic kidney disease. Indian J Nephrol. 2015;25:287-91. doi: 10.4103/0971-4065.147376. PubMed PMID: 26628794; PubMed Central PMCID: PMCPMC4588324.
  29. Cabarkapa V, Djeric M, Stosic Z, Sakac V, Zagorka LC, Vuckovic B. Evaluation of lipid parameters and bioindices in patients with different stages of chronic renal failure. Vojnosanit Pregl. 2012;69:961-6. PubMed PMID: 23311247.
  30. Lamoke F, Mazzone V, Persichini T, Maraschi A, Harris MB, Venema RC, et al. Amyloid beta peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J Neuroinflammation. 2015;12:84. doi: 10.1186/s12974-015-0304-x. PubMed PMID: 25935150; PubMed Central PMCID: PMCPMC4438457.
  31. Gulen B, Eken C, Kucukdagli OT, Serinken M, Kocyigit A, Kilic E, et al. Adropin levels and target organ damage secondary to high blood pressure in the ED. Am J Emerg Med. 2016;34:2061-4. doi: 10.1016/j.ajem.2016.04.014. PubMed PMID: 27592461.
  32. Nakashima A, Kato K, Ohkido I, Yokoo T. Role and Treatment of Insulin Resistance in Patients with Chronic Kidney Disease: A Review. Nutrients. 2021;13. doi: 10.3390/nu13124349. PubMed PMID: 34959901; PubMed Central PMCID: PMCPMC8707041.
  33. Xu H, Carrero JJ. Insulin resistance in chronic kidney disease. Nephrology (Carlton). 2017;22:31-4. doi: 10.1111/nep.13147. PubMed PMID: 29155496.
  34. Valdivielso JM, Rodriguez-Puyol D, Pascual J, Barrios C, Bermudez-Lopez M, Sanchez-Nino MD, et al. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler Thromb Vasc Biol. 2019;39:1938-66. doi: 10.1161/ATVBAHA.119.312705. PubMed PMID: 31412740.
  35. Adejumo OA, Okaka EI, Ojogwu LI. Lipid profile in pre-dialysis chronic kidney disease patients in southern Nigeria. Ghana Med J. 2016;50:44-9. doi: 10.4314/gmj.v50i1.7. PubMed PMID: 27605724; PubMed Central PMCID: PMCPMC4994483.
  36. Amdur RL, Feldman HI, Dominic EA, Anderson AH, Beddhu S, Rahman M, et al. Use of Measures of Inflammation and Kidney Function for Prediction of Atherosclerotic Vascular Disease Events and Death in Patients With CKD: Findings From the CRIC Study. Am J Kidney Dis. 2019;73:344-53. doi: 10.1053/j.ajkd.2018.09.012. PubMed PMID: 30545708; PubMed Central PMCID: PMCPMC6812505.
  37. Bo MS, Cheah WL, Lwin S, Moe Nwe T, Win TT, Aung M. Understanding the Relationship between Atherogenic Index of Plasma and Cardiovascular Disease Risk Factors among Staff of an University in Malaysia. J Nutr Metab. 2018;2018:7027624. doi: 10.1155/2018/7027624. PubMed PMID: 30116641; PubMed Central PMCID: PMCPMC6079547.
  38. Apple FS, Collinson PO, Biomarkers ITFoCAoC. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58:54-61. doi: 10.1373/clinchem.2011.165795. PubMed PMID: 21965555.
  39. Simes J, Robledo KP, White HD, Espinoza D, Stewart RA, Sullivan DR, et al. D-Dimer Predicts Long-Term Cause-Specific Mortality, Cardiovascular Events, and Cancer in Patients With Stable Coronary Heart Disease: LIPID Study. Circulation. 2018;138:712-23. doi: 10.1161/CIRCULATIONAHA.117.029901. PubMed PMID: 29367425.
  40. Carlstrom M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol. 2021;17:575-90. doi: 10.1038/s41581-021-00429-z. PubMed PMID: 34075241; PubMed Central PMCID: PMCPMC8169406.