Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

2 Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia

3 Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia

10.30476/ijms.2024.99450.3149

Abstract

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli (APC) gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra (Abelmoschus esculentus) pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.
Methods: The IC50 of EEROP in SW480 cells was determined by treating the cells with varying doses of EEROP, ranging from 0 to 1000 µg/mL. Apoptosis assay and signaling pathway analysis were performed through immunofluorescence staining and Western Blotting on SW480 cells treated with 250 µg/mL of EEROP for 72 hours. 
Results: EEROP treatment induced apoptosis in SW480 cells, marked by elevated levels of active caspase-3 (P<0.001) and cleaved poly-(ADP-ribose) polymerase (PARP)-1. Moreover, it notably decreased β-catenin protein levels, resulting in an augmented occurrence of cells displaying abnormal spindle segregation during mitosis (P=0.04).
Conclusion: EEROP treatment reduces β-catenin protein levels, promotes abnormal spindle apparatus segregation, and finally leads to apoptotic cell death in CRC cells.

Keywords

  1. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol. 2015;309(8):C511-21. doi: 10.1152/ajpcell.00117.2015. PubMed PMID: 26289750; PubMed Central PMCID: PMCPMC4609654.
  2. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21(1):144. doi: 10.1186/s12943-022-01616-7. PubMed PMID: 35836256; PubMed Central PMCID: PMCPMC9281132.
  3. Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972-89. doi: 10.18632/oncotarget.15687. PubMed PMID: 28430641; PubMed Central PMCID: PMCPMC5464927.
  4. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. doi: 10.1186/s13045-020-00990-3. PubMed PMID: 33276800; PubMed Central PMCID: PMCPMC7716495.
  5. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898. doi: 10.1101/cshperspect.a007898. PubMed PMID: 23169527; PubMed Central PMCID: PMCPMC3579403.
  6. Herbst A, Jurinovic V, Krebs S, Thieme SE, Blum H, Goke B, et al. Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics. 2014;15:74. doi: 10.1186/1471-2164-15-74. PubMed PMID: 24467841; PubMed Central PMCID: PMCPMC3909937.
  7. Kaplan DD, Meigs TE, Kelly P, Casey PJ. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem. 2004;279(12):10829-32. doi: 10.1074/jbc.C400035200. PubMed PMID: 14744872.
  8. Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH, Jr., O’Toole ET, Winey M, et al. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008;22(1):91-105. doi: 10.1101/gad.1596308. PubMed PMID: 18086858; PubMed Central PMCID: PMCPMC2151018.
  9. Bahmanyar S, Guiney EL, Hatch EM, Nelson WJ, Barth AI. Formation of extra centrosomal structures is dependent on beta-catenin. J Cell Sci. 2010;123(Pt 18):3125-35. doi: 10.1242/jcs.064782. PubMed PMID: 20736306; PubMed Central PMCID: PMCPMC2931606.
  10. Mbom BC, Siemers KA, Ostrowski MA, Nelson WJ, Barth AI. Nek2 phosphorylates and stabilizes beta-catenin at mitotic centrosomes downstream of Plk1. Mol Biol Cell. 2014;25(7):977-91. doi: 10.1091/mbc.E13-06-0349. PubMed PMID: 24501426; PubMed Central PMCID: PMCPMC3967981.
  11. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490-502. doi: 10.1016/S0140-6736(13)61649-9. PubMed PMID: 24225001.
  12. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. PubMed PMID: 30207593.
  13. Yin SY, Wei WC, Jian FY, Yang NS. Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat Med. 2013;2013:302426. doi: 10.1155/2013/302426. PubMed PMID: 23956768; PubMed Central PMCID: PMCPMC3727181.
  14. Durazzo A, Lucarini M, Novellino E, Souto EB, Daliu P, Santini A. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties-Focused on Antidiabetic Role-For Sustainable Health Applications. Molecules. 2018;24(1). doi: 10.3390/molecules24010038. PubMed PMID: 30583476; PubMed Central PMCID: PMCPMC6337517.
  15. Nisa N, Wahyuningsih SPA, Darmanto W, Purnama PR, Dewi FRP, Soegiarti T, et al. Effect of the Ethanol Extract of Red Okra Pods (Abelmoschus esculentus (L.) Moench) to Inhibit Cervical Cancer Cells Growth through Cell Cycle-Associated Oncogenes. Scientifica (Cairo). 2022;2022:1094771. doi: 10.1155/2022/1094771. PubMed PMID: 35529172; PubMed Central PMCID: PMCPMC9072054.
  16. Pramudya M, Dewi FRP, Wong RW, Anggraini DW, Winarni D, Wahyuningsih SPA. Anti-cancer activity of an ethanolic extract of red okra pods (Abelmoschus esculentus L. Moench) in rats induced by N-methyl-N-nitrosourea. Vet World. 2022;15(5):1177-84. doi: 10.14202/vetworld.2022.1177-1184. PubMed PMID: 35765486; PubMed Central PMCID: PMCPMC9210857.
  17. Dewi FRP, Shoukat N, Alifiyah NI, Wahyuningsih SPA, Rosyidah A, Prenggono MD, et al. Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer. Heliyon. 2022;8(11):e11418. doi: 10.1016/j.heliyon.2022.e11418. PubMed PMID: 36387488; PubMed Central PMCID: PMCPMC9650002.
  18. Dewi FRP, Domoto T, Hazawa M, Kobayashi A, Douwaki T, Minamoto T, et al. Colorectal cancer cells require glycogen synthase kinase-3beta for sustaining mitosis via translocated promoter region (TPR)-dynein interaction. Oncotarget. 2018;9(17):13337-52. doi: 10.18632/oncotarget.24344. PubMed PMID: 29568361; PubMed Central PMCID: PMCPMC5862582.
  19. Kobayashi A, Hashizume C, Dowaki T, Wong RW. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle. 2015;14(9):1447-58. doi: 10.1080/15384101.2015.1021518. PubMed PMID: 25789545; PubMed Central PMCID: PMCPMC4614903.
  20. Kurien BT, Scofield RH. Western blotting: an introduction. Methods Mol Biol. 2015;1312:17-30. doi: 10.1007/978-1-4939-2694-7_5. PubMed PMID: 26043986; PubMed Central PMCID: PMCPMC7304528.
  21. Dewi FRP, Jiapaer S, Kobayashi A, Hazawa M, Ikliptikawati DK, Hartono, et al. Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy. 2021;17(4):1001-12. doi: 10.1080/15548627.2020.1741318. PubMed PMID: 32207633; PubMed Central PMCID: PMCPMC8078762.
  22. Mohamed MS, Hazawa M, Kobayashi A, Guillaud L, Watanabe-Nakayama T, Nakayama M, et al. Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core. Biomaterials. 2020;256:120198. doi: 10.1016/j.biomaterials.2020.120198. PubMed PMID: 32622019.
  23. Hazawa M, Lin DC, Kobayashi A, Jiang YY, Xu L, Dewi FRP, et al. ROCK-dependent phosphorylation of NUP62 regulates p63 nuclear transport and squamous cell carcinoma proliferation. EMBO Rep. 2018;19(1):73-88. doi: 10.15252/embr.201744523. PubMed PMID: 29217659; PubMed Central PMCID: PMCPMC5757218.
  24. Chaitanya GV, Steven AJ, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 2010;8:31. doi: 10.1186/1478-811X-8-31. PubMed PMID: 21176168; PubMed Central PMCID: PMCPMC3022541.
  25. Deng Y, Li S, Wang M, Chen X, Tian L, Wang L, et al. Flavonoid-rich extracts from okra flowers exert antitumor activity in colorectal cancer through induction of mitochondrial dysfunction-associated apoptosis, senescence and autophagy. Food Funct. 2020;11(12):10448-66. doi: 10.1039/d0fo02081h. PubMed PMID: 33241810.
  26. Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018;32(11):2109-30. doi: 10.1002/ptr.6155. PubMed PMID: 30039547.
  27. Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, et al. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front Immunol. 2023;14:1077531. doi: 10.3389/fimmu.2023.1077531. PubMed PMID: 36926328; PubMed Central PMCID: PMCPMC10011078.
  28. Monte LG, Santi-Gadelha T, Reis LB, Braganhol E, Prietsch RF, Dellagostin OA, et al. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells. Biotechnol Lett. 2014;36(3):461-9. doi: 10.1007/s10529-013-1382-4. PubMed PMID: 24129958.
  29. Musthafa SA, Muthu K, Vijayakumar S, George SJ, Murali S, Govindaraj J, et al. Lectin isolated from Abelmoschus esculentus induces caspase mediated apoptosis in human U87 glioblastoma cell lines and modulates the expression of circadian clock genes. Toxicon. 2021;202:98-109. doi: 10.1016/j.toxicon.2021.08.025. PubMed PMID: 34562497.
  30. Disoma C, Zhou Y, Li S, Peng J, Xia Z. Wnt/beta-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie. 2022;195:39-53. doi: 10.1016/j.biochi.2022.01.009. PubMed PMID: 35066101.
  31. He K, Gan WJ. Wnt/beta-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res. 2023;15:435-48. doi: 10.2147/CMAR.S411168. PubMed PMID: 37250384; PubMed Central PMCID: PMCPMC10224676.
  32. Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/betacatenin signaling for colorectal cancer (Review). Int J Mol Med. 2022;49(1). doi: 10.3892/ijmm.2021.5056. PubMed PMID: 34713301; PubMed Central PMCID: PMCPMC8589460.
  33. Yamaguchi H, Hsu JL, Hung MC. Regulation of ubiquitination-mediated protein degradation by survival kinases in cancer. Front Oncol. 2012;2:15. doi: 10.3389/fonc.2012.00015. PubMed PMID: 22649777; PubMed Central PMCID: PMCPMC3355968.
  34. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114-31. doi: 10.1016/j.pharmthera.2014.11.016. PubMed PMID: 25435019; PubMed Central PMCID: PMCPMC4340754.
  35. Yoshino Y, Ishioka C. Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Sci Rep. 2015;5:13249. doi: 10.1038/srep13249. PubMed PMID: 26292722; PubMed Central PMCID: PMCPMC4543981.
  36. Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene. 2002;21(55):8414-27. doi: 10.1038/sj.onc.1205947. PubMed PMID: 12466962.
  37. Su Y, Simmen RC. Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis. 2009;30(2):331-9. doi: 10.1093/carcin/bgn279. PubMed PMID: 19073877.