Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Group of Biotechnology, Institute of Persian Gulf, Persian Gulf University, Bushehr, Iran

2 Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran

3 Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

10.30476/ijms.2024.101162.3378

Abstract

Background: The current work investigated the immunological features of insulin-producing cells (IPCs) generated from rat adipose-derived mesenchymal stem cells (ADSCs) both in vitro and in vivo. 
Methods: The research was carried out at Ahvaz Jundishapur University of Medical Sciences in 2023. ADSCs were derived from rat adipose tissues and differentiated into IPCs. The control group included undifferentiated ADSCs. The amount of secreted insulin was measured using ELISA. The expression of major histocompatibility complex-I (MHC-I) and MHC-II, cluster of differentiation 40 (CD40), and CD80 by IPCs in vitro was assessed using Western Blot analysis. The in vivo study was performed on 10 male diabetic rats. The experimental group received 107 IPCs in the peritoneal cavity. The control group received 107 undifferentiated ADSCs. After 4 hours, the expression of CD3a and CD45 by immune cells collected from the peritoneal cavity was measured using flow cytometry. All parameters were statistically analyzed using a t test.
Results: The differentiated cells secreted much higher amounts of insulin than the control group (P=0.04). IPCs exhibited higher expression of MHC-I and MHC-II, CD40, and CD80 (P=0.02, P=0.008, P=0.07, and P=0.02, respectively). The experimental group showed higher levels of CD3a and CD45 expression than the control group (P=0.07, P=0.04, respectively). 
Conclusion: Functional IPCs generated by ADSCs differentiation exhibited immunogenic activity both in vitro and in vivo. Immune-modulating strategies are required for the effective transplantation of the differentiated IPCs generated in our study.

Keywords

  1. Zhou Z, Zhu X, Huang H, Xu Z, Jiang J, Chen B, et al. Recent Progress of Research Regarding the Applications of Stem Cells for Treating Diabetes Mellitus. Stem Cells Dev. 2022;31:102-10. doi: 10.1089/scd.2021.0083. PubMed PMID: 35072537.
  2. Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, et al. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol. 2022;13:923241. doi: 10.3389/fimmu.2022.923241. PubMed PMID: 35903090; PubMed Central PMCID: PMCPMC9315421.
  3. Asam S, Nayar S, Gardner D, Barone F. Stromal cells in tertiary lymphoid structures: Architects of autoimmunity. Immunol Rev. 2021;302:184-95. doi: 10.1111/imr.12987. PubMed PMID: 34060101.
  4. Huang Y, Yin Y, Gu Y, Gu Q, Yang H, Zhou Z, et al. Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. Sci China Life Sci. 2020;63:429-42. doi: 10.1007/s11427-019-1555-9. PubMed PMID: 31879847.
  5. Sineh Sepehr K, Razavi A, Hassan ZM, Fazel A, Abdollahpour-Alitappeh M, Mossahebi-Mohammadi M, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue. Cancer Immunol Immunother. 2020;69:1841-54. doi: 10.1007/s00262-020-02567-y. PubMed PMID: 32350594; PubMed Central PMCID: PMCPMC11027656.
  6. Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, et al. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life. 2020;72:2366-81. doi: 10.1002/iub.2387. PubMed PMID: 33006813.
  7. Shephard MT, Merkhan MM, Forsyth NR. Human Mesenchymal Stem Cell Secretome Driven T Cell Immunomodulation Is IL-10 Dependent. Int J Mol Sci. 2022;23. doi: 10.3390/ijms232113596. PubMed PMID: 36362383; PubMed Central PMCID: PMCPMC9658100.
  8. Yang JH, Kim KY, Kim YW, Park KI. Artemisia anomala Herba Alleviates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions in Mice and the Production of Pro-Inflammatory Mediators in Tumor Necrosis Factor Alpha-/Interferon Gamma-Induced HaCaT Cells. Molecules. 2021;26. doi: 10.3390/molecules26175427. PubMed PMID: 34500860; PubMed Central PMCID: PMCPMC8433842.
  9. Naeem A, Gupta N, Naeem U, Elrayess MA, Albanese C. Amniotic stem cells as a source of regenerative medicine to treat female infertility. Hum Cell. 2023;36:15-25. doi: 10.1007/s13577-022-00795-1. PubMed PMID: 36251241; PubMed Central PMCID: PMCPMC9813167.
  10. Melnik S, Werth N, Boeuf S, Hahn EM, Gotterbarm T, Anton M, et al. Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther. 2019;10:73. doi: 10.1186/s13287-019-1187-z. PubMed PMID: 30836996; PubMed Central PMCID: PMCPMC6402108.
  11. Srinivasan A, Sathiyanathan P, Yin L, Liu TM, Lam A, Ravikumar M, et al. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy. 2022;24:456-72. doi: 10.1016/j.jcyt.2021.11.009. PubMed PMID: 35227601.
  12. Teshima T, Okamoto K, Dairaku K, Nagashima T, Michishita M, Suzuki R, et al. Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int. 2020;2020:8841865. doi: 10.1155/2020/8841865. PubMed PMID: 33133196; PubMed Central PMCID: PMCPMC7591982.
  13. Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem. 2023;125:152041. doi: 10.1016/j.acthis.2023.152041. PubMed PMID: 37167794.
  14. Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, et al. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol. 2023;102:151329. doi: 10.1016/j.ejcb.2023.151329. PubMed PMID: 37295265.
  15. Saha A, Samadder A, Nandi S. Stem Cell Therapy in Combination with Naturopathy: Current Progressive Management of Diabetes and Associated Complications. Curr Top Med Chem. 2023;23:649-89. doi: 10.2174/1568026623666221201150933. PubMed PMID: 36464871.
  16. Siwakoti P, Rennie C, Huang Y, Li JJ, Tuch BE, McClements L, et al. Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep. 2023;19:601-24. doi: 10.1007/s12015-022-10482-1. PubMed PMID: 36434300.
  17. Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent Advances in the Generation of beta-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. Adv Exp Med Biol. 2021;1347:1-27. doi: 10.1007/5584_2021_653. PubMed PMID: 34426962.
  18. Shrestha P, Regmi S, Jeong J-H. Injectable hydrogels for islet transplantation: a concise review. Journal of Pharmaceutical Investigation. 2020;50:29-45. doi: 10.1007/s40005-019-00433-3.
  19. Aron Badin R, Bugi A, Williams S, Vadori M, Michael M, Jan C, et al. MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nat Commun. 2019;10:4357. doi: 10.1038/s41467-019-12324-0. PubMed PMID: 31554807; PubMed Central PMCID: PMCPMC6761126.
  20. D’Elia JA, Weinrauch LA. Hyperglycemia and Hyperlipidemia with Kidney or Liver Transplantation: A Review. Biology (Basel). 2023;12. doi: 10.3390/biology12091185. PubMed PMID: 37759585; PubMed Central PMCID: PMCPMC10525610.
  21. Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev. 2021;174:87-113. doi: 10.1016/j.addr.2021.01.011. PubMed PMID: 33484736; PubMed Central PMCID: PMCPMC8217111.
  22. Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, et al. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol. 2021;12:690623. doi: 10.3389/fimmu.2021.690623. PubMed PMID: 34248981; PubMed Central PMCID: PMCPMC8262452.
  23. Hashemi Tabar M, Tabandeh MR, Moghimipour E, Dayer D, Ghadiri AA, Allah Bakhshi E, et al. The combined effect of Pdx1 overexpression and Shh manipulation on the function of insulin-producing cells derived from adipose-tissue stem cells. FEBS Open Bio. 2018;8:372-82. doi: 10.1002/2211-5463.12378. PubMed PMID: 29511614; PubMed Central PMCID: PMCPMC5832980.
  24. Dayer D, Tabandeh MR, Moghimipour E, Hashemi Tabar M, Ghadiri A, Allah Bakhshi E, et al. MafA Overexpression: A New Efficient Protocol for In Vitro Differentiation of Adipose-Derived Mesenchymal Stem Cells into Functional Insulin-Producing Cells. Cell J. 2019;21:169-78. doi: 10.22074/cellj.2019.5669. PubMed PMID: 30825290; PubMed Central PMCID: PMCPMC6397604.
  25. Balboa D, Barsby T, Lithovius V, Saarimaki-Vire J, Omar-Hmeadi M, Dyachok O, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol. 2022;40:1042-55. doi: 10.1038/s41587-022-01219-z. PubMed PMID: 35241836; PubMed Central PMCID: PMCPMC9287162.
  26. Tsai PJ, Wang HS, Lin GJ, Chou SC, Chu TH, Chuan WT, et al. Undifferentiated Wharton’s Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice. Cell Transplant. 2015;24:1555-70. doi: 10.3727/096368914X683016. PubMed PMID: 25198179.
  27. Ebrahimie M, Esmaeili F, Cheraghi S, Houshmand F, Shabani L, Ebrahimie E. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer. PLoS One. 2014;9:e90885. doi: 10.1371/journal.pone.0090885. PubMed PMID: 24614166; PubMed Central PMCID: PMCPMC3948699.
  28. Thirlwell KL, Colligan D, Mountford JC, Samuel K, Bailey L, Cuesta-Gomez N, et al. Pancreas-derived mesenchymal stromal cells share immune response-modulating and angiogenic potential with bone marrow mesenchymal stromal cells and can be grown to therapeutic scale under Good Manufacturing Practice conditions. Cytotherapy. 2020;22:762-71. doi: 10.1016/j.jcyt.2020.07.010. PubMed PMID: 32828673.
  29. Wu H, Wen D, Mahato RI. Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model. Mol Ther. 2013;21:1778-86. doi: 10.1038/mt.2013.147. PubMed PMID: 23765442; PubMed Central PMCID: PMCPMC3776634.
  30. Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013;4:125. doi: 10.1186/scrt336. PubMed PMID: 24406104; PubMed Central PMCID: PMCPMC3854702.
  31. Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, et al. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy. 2009;11:414-26. doi: 10.1080/14653240902849754. PubMed PMID: 19513901.
  32. Mohammadi N, Mardomi A, Hassannia H, Enderami SE, Ranjbaran H, Rafiei A, et al. Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiology. 2020;225:151994. doi: 10.1016/j.imbio.2020.151994. PubMed PMID: 32962814.
  33. Rowland AL, Miller D, Berglund A, Schnabel LV, Levine GJ, Antczak DF, et al. Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Transl Med. 2021;10:694-710. doi: 10.1002/sctm.20-0435. PubMed PMID: 33369287; PubMed Central PMCID: PMCPMC8046071.
  34. Hassanin OM, El-Masry TM, Abu-Zahra FA, El-Adawy S, Abdellah AM. Immune-Modulatory Changes After Transplantation Therapy of Insulin Producing Cells Derived from Wharton’s Jelly Human Umbilical Cord-Mesenchymal Stem Cells in Diabetes Induced Rats. Egypt J Immunol. 2019;26:55-67. PubMed PMID: 31332996.
  35. Yang XF, Chen T, Ren LW, Yang L, Qi H, Li FR. Immunogenicity of insulin-producing cells derived from human umbilical cord mesenchymal stem cells. Exp Ther Med. 2017;13:1456-64. doi: 10.3892/etm.2017.4096. PubMed PMID: 28413492; PubMed Central PMCID: PMCPMC5377284.
  36. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53:1721-32. doi: 10.2337/diabetes.53.7.1721. PubMed PMID: 15220196; PubMed Central PMCID: PMCPMC3422216.
  37. Ghoneim MA, Gabr MM, Refaie AF, El-Halawani SM, Al-Issawi MM, Elbassiouny BL, et al. Transplantation of insulin-producing cells derived from human mesenchymal stromal/stem cells into diabetic humanized mice. Stem Cell Res Ther. 2022;13:350. doi: 10.1186/s13287-022-03048-y. PubMed PMID: 35883190; PubMed Central PMCID: PMCPMC9327173.
  38. Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 2010;122:2419-29. doi: 10.1161/CIRCULATIONAHA.110.955971. PubMed PMID: 21098445.
  39. Gu LH, Zhang TT, Li Y, Yan HJ, Qi H, Li FR. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol. 2015;12:444-55. doi: 10.1038/cmi.2014.70. PubMed PMID: 25242276; PubMed Central PMCID: PMCPMC4496541.
  40. Boyd AS, Wood KJ. Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation. 2009;87:1300-4. doi: 10.1097/TP.0b013e3181a19421. PubMed PMID: 19424028; PubMed Central PMCID: PMCPMC2796795.