Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran

2 Department of Internal Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

3 Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran

10.30476/ijms.2024.101457.3414

Abstract

Background: Developing a practical method to predict active systemic lupus erythematosus (SLE) in patients with inactive/mild status at the onset of the disease could lead to appropriate treatment that ultimately prevents future relapses. The development of SLE is influenced by steroid hormones and probably the receptors of these hormones. Therefore, we aimed to investigate the predictive effect of the levels of estradiol and testosterone hormones and their receptors on the severity of SLE disease.
Methods: Serum samples were taken from 59 female patients with inactive SLE in Golestan province in northern Iran. The concentration of estradiol (E2) and testosterone (T) hormones and their receptors, estrogen receptors (ER) and androgen receptors (AR), was measured at the beginning of the study after sampling. After a one-year follow-up (2021 to 2022), the patients were divided into active and inactive SLE groups based on the clinical criteria of the SLE activity index. T test and Mann-Whitney U-test were used to analyze the difference of variables. The correlation was analyzed using Pearson and Spearman tests. Discriminative power was measured, and a cut-off point was suggested.
Results: There was a significant difference in the average E2+ER/T+AR ratio between active and inactive SLE groups (P<0.001). It was also found that this ratio has a significant correlation with the severity of the disease (r=0.546, P<0.001).
Conclusion: Despite the normal concentration of each steroid hormone and its receptors, the E2+ER/T+AR ratio may be a good indicator of the development of active SLE.

Keywords

  1. Shaikh MF, Jordan N, D’Cruz DP. Systemic lupus erythematosus. Clin Med (Lond). 2017;17:78-83. doi: 10.7861/clinmedicine.17-1-78. PubMed PMID: 28148586; PubMed Central PMCID: PMCPMC6297589.
  2. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39. PubMed PMID: 27306639.
  3. Trombetta AC, Meroni M, Cutolo M. Steroids and Autoimmunity. Front Horm Res. 2017;48:121-32. doi: 10.1159/000452911. PubMed PMID: 28245457.
  4. Cai L, Zhang JW, Xue XX, Wang ZG, Wang JJ, Tang SD, et al. Meta-analysis of associations of IL1 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility. PLoS One. 2014;9:e109712. doi: 10.1371/journal.pone.0109712. PubMed PMID: 25286391; PubMed Central PMCID: PMCPMC4186846.
  5. Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies. Front Immunol. 2019;10:1667. doi: 10.3389/fimmu.2019.01667. PubMed PMID: 31379858; PubMed Central PMCID: PMCPMC6650533.
  6. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294:63-9. doi: 10.1016/j.cellimm.2015.01.018. PubMed PMID: 25682174; PubMed Central PMCID: PMCPMC4380804.
  7. Seifert HA, Benedek G, Nguyen H, Kent G, Vandenbark AA, Offner H. Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metab Brain Dis. 2017;32:1747-54. doi: 10.1007/s11011-017-0063-8. PubMed PMID: 28689297; PubMed Central PMCID: PMCPMC5650507.
  8. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One. 2012;7:e44552. doi: 10.1371/journal.pone.0044552. PubMed PMID: 22970248; PubMed Central PMCID: PMCPMC3438183.
  9. Chen RY, Fan YM, Zhang Q, Liu S, Li Q, Ke GL, et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERalpha/REA complex to estrogen response elements of the RORgammaT promoter. J Immunol. 2015;194:4019-28. doi: 10.4049/jimmunol.1400806. PubMed PMID: 25769926; PubMed Central PMCID: PMCPMC4390502.
  10. Maglione A, Rolla S, Mercanti SF, Cutrupi S, Clerico M. The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells. 2019;8. doi: 10.3390/cells8101280. PubMed PMID: 31635066; PubMed Central PMCID: PMCPMC6829884.
  11. Maselli A, Conti F, Alessandri C, Colasanti T, Barbati C, Vomero M, et al. Low expression of estrogen receptor beta in T lymphocytes and high serum levels of anti-estrogen receptor alpha antibodies impact disease activity in female patients with systemic lupus erythematosus. Biol Sex Differ. 2016;7:3. doi: 10.1186/s13293-016-0057-y. PubMed PMID: 26759713; PubMed Central PMCID: PMCPMC4709986.
  12. Svenson JL, EuDaly J, Ruiz P, Korach KS, Gilkeson GS. Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. Clin Immunol. 2008;128:259-68. doi: 10.1016/j.clim.2008.03.508. PubMed PMID: 18514033; PubMed Central PMCID: PMCPMC4778964.
  13. Wu X, Tong B, Yang Y, Luo J, Yuan X, Wei Z, et al. Arctigenin functions as a selective agonist of estrogen receptor beta to restrict mTORC1 activation and consequent Th17 differentiation. Oncotarget. 2016;7:83893-906. doi: 10.18632/oncotarget.13338. PubMed PMID: 27863380; PubMed Central PMCID: PMCPMC5356633.
  14. Wasmuth EV, Hoover EA, Antar A, Klinge S, Chen Y, Sawyers CL. Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proc Natl Acad Sci U S A. 2020;117:8584-92. doi: 10.1073/pnas.1922159117. PubMed PMID: 32220959; PubMed Central PMCID: PMCPMC7165421.
  15. Trigunaite A, Dimo J, Jorgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87-94. doi: 10.1016/j.cellimm.2015.02.004. PubMed PMID: 25708485.
  16. Letchumanan P, Thumboo J. Danazol in the treatment of systemic lupus erythematosus: a qualitative systematic review. Semin Arthritis Rheum. 2011;40:298-306. doi: 10.1016/j.semarthrit.2010.03.005. PubMed PMID: 20541792.
  17. Magallares B, Lobo-Prat D, Castellvi I, Moya P, Gich I, Martinez-Martinez L, et al. Assessment of EULAR/ACR-2019, SLICC-2012 and ACR-1997 Classification Criteria in SLE with Longstanding Disease. J Clin Med. 2021;10. doi: 10.3390/jcm10112377. PubMed PMID: 34071275; PubMed Central PMCID: PMCPMC8198204.
  18. Ceccarelli F, Perricone C, Massaro L, Cipriano E, Alessandri C, Spinelli FR, et al. Assessment of disease activity in Systemic Lupus Erythematosus: Lights and shadows. Autoimmun Rev. 2015;14:601-8. doi: 10.1016/j.autrev.2015.02.008. PubMed PMID: 25742757.
  19. Unal I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput Math Methods Med. 2017;2017:3762651. doi: 10.1155/2017/3762651. PubMed PMID: 28642804; PubMed Central PMCID: PMCPMC5470053.
  20. Tedeschi SK, Bermas B, Costenbader KH. Sexual disparities in the incidence and course of SLE and RA. Clin Immunol. 2013;149:211-8. doi: 10.1016/j.clim.2013.03.003. PubMed PMID: 23578823.
  21. Raeisi D, Zare ME, Nasir A, Sherkatolabbasieh H, Shafeizadeh S. Sex Hormones and Prolactin Levels and Their Association with Anti Cardiolipin Antibody in Patients with Systemic Lupus Erythematosus. Iran J Allergy Asthma Immunol. 2018;17:336-45. doi: 10.18502/ijaai.v17i4.93. PubMed PMID: 30537797.
  22. Pan Q, Chen X, Liao S, Chen X, Zhao C, Xu YZ, et al. Updated advances of linking psychosocial factors and sex hormones with systemic lupus erythematosus susceptibility and development. PeerJ. 2019;7:e7179. doi: 10.7717/peerj.7179. PubMed PMID: 31275761; PubMed Central PMCID: PMCPMC6598654.
  23. Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol. 2021;12:619268. doi: 10.3389/fimmu.2021.619268. PubMed PMID: 33746959; PubMed Central PMCID: PMCPMC7966510.
  24. Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol. 2018;9:2279. doi: 10.3389/fimmu.2018.02279. PubMed PMID: 30337927; PubMed Central PMCID: PMCPMC6180207.
  25. Lasrado N, Jia T, Massilamany C, Franco R, Illes Z, Reddy J. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ. 2020;11:50. doi: 10.1186/s13293-020-00325-4. PubMed PMID: 32894183; PubMed Central PMCID: PMCPMC7475723.
  26. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011;40:66-73. doi: 10.1007/s12016-010-8203-5. PubMed PMID: 20352526.
  27. Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev. 2016;37:3-15. PubMed PMID: 27057074; PubMed Central PMCID: PMCPMC4810760.
  28. Wu D, Ye L, Zhang X, Yin M, Guo Y, Zhou J. Characteristics of steroid hormones in systemic lupus erythematosus revealed by GC/MS-based metabolic profiling. Front Endocrinol (Lausanne). 2023;14:1164679. doi: 10.3389/fendo.2023.1164679. PubMed PMID: 37576955; PubMed Central PMCID: PMCPMC10415909.
  29. Treadwell EL, Wiley K, Word B, Melchior W, Tolleson WH, Gopee N, et al. Prolactin and Dehydroepiandrosterone Levels in Women with Systemic Lupus Erythematosus: The Role of the Extrapituitary Prolactin Promoter Polymorphism at -1149G/T. J Immunol Res. 2015;2015:435658. doi: 10.1155/2015/435658. PubMed PMID: 26583155; PubMed Central PMCID: PMCPMC4637102.