Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Medical Imaging Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha 760010, India

4 Retired Scientist from Indian Institute of Astrophysics, Tamil Nadu, India

5 Ongil, 79 D3, Sivaya Nagar Reddiyur, Alagapuram, Tamil Nadu, India

6 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/ijms.2024.102043.3477

Abstract

Background: X-ray computed tomography (CT) is a standard tool for diagnosing bone abnormalities. CT dose optimization is strongly recommended, due to the stochastic effects of x-ray. This study aims to assess the effectiveness of ultra-low-dose CT (ULD-CT) imaging, reconstructed using an Iterative Reconstruction (IR) algorithm, in detecting bone trauma and disorders.
Methods: In the present cross-sectional study, 71 patients with CT requests for spine or extremity (limb) bone underwent scanning using standard dose (SD) and ULD-CT protocols, in Shahid Faghihi Hospital, Shiraz, Iran from June 2019 to June 2020. The SD and ULD-CT protocols used 120 kVp and 80 kVp, respectively. The CT images were reconstructed using the standard and IR algorithms. CT dose indices, including the volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose (ED), were employed. To assess image quality, a five-point scoring system was used. The sensitivity and specificity of the ULD-CT images were calculated.
Results: The findings indicated that ULD-CT images accurately identified 113 out of 118 bone trauma and disorders. The quality of ULD-CT images received “very good”, “good” and “acceptable” scores for both spine and extremity (limb) bones. The sensitivity and specificity of ULD-CT images for bone trauma and disorders were 67%–95% and 100%, respectively, with about a 98% dose reduction.
Conclusion: The ULD-CT protocol for bone imaging achieved a remarkable dose reduction, while the image quality was reported as acceptable. Consequently, ULD-CT images reconstructed using an IR are suitable and can be tuned further in the future for acceptable use in patients with bone trauma and disorders.

Keywords

  1. Murphy MC, Gibney B, Walsh J, Orpen G, Kenny E, Bolster F, et al. Ultra-low-dose cone-beam CT compared to standard dose in the assessment for acute fractures. Skeletal Radiol. 2022;51:153-9. doi: 10.1007/s00256-021-03825-5. PubMed PMID: 34132888.
  2. Kranz R, Cosson P. Anatomical and/or pathological predictors for the “incorrect” classification of red dot markers on wrist radiographs taken following trauma. Br J Radiol. 2015;88:20140503. doi: 10.1259/bjr.20140503. PubMed PMID: 25496373; PubMed Central PMCID: PMCPMC4614237.
  3. Crowley DJ, Kanakaris NK, Giannoudis PV. Debridement and wound closure of open fractures: the impact of the time factor on infection rates. Injury. 2007;38:879-89. doi: 10.1016/j.injury.2007.01.012. PubMed PMID: 17532320.
  4. Lampart A, Arnold I, Mader N, Niedermeier S, Escher A, Stahl R, et al. Prevalence of Fractures and Diagnostic Accuracy of Emergency X-ray in Older Adults Sustaining a Low-Energy Fall: A Retrospective Study. J Clin Med. 2019;9. doi: 10.3390/jcm9010097. PubMed PMID: 31906002; PubMed Central PMCID: PMCPMC7019509.
  5. Guly HR. Diagnostic errors in an accident and emergency department. Emerg Med J. 2001;18:263-9. doi: 10.1136/emj.18.4.263. PubMed PMID: 11435359; PubMed Central PMCID: PMCPMC1725632.
  6. Petinaux B, Bhat R, Boniface K, Aristizabal J. Accuracy of radiographic readings in the emergency department. Am J Emerg Med. 2011;29:18-25. doi: 10.1016/j.ajem.2009.07.011. PubMed PMID: 20825769.
  7. Alagic Z, Bujila R, Enocson A, Srivastava S, Koskinen SK. Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjects. Skeletal Radiol. 2020;49:531-9. doi: 10.1007/s00256-019-03309-7. PubMed PMID: 31501959; PubMed Central PMCID: PMCPMC7021773.
  8. Avci M, Kozaci N. Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma. Medicina (Kaunas). 2019;55. doi: 10.3390/medicina55100623. PubMed PMID: 31547588; PubMed Central PMCID: PMCPMC6843286.
  9. Chen Y, Zhang K, Qiang M, Li H, Dai H. Comparison of plain radiography and CT in postoperative evaluation of ankle fractures. Clin Radiol. 2015;70:e74-82. doi: 10.1016/j.crad.2015.04.011. PubMed PMID: 26055409.
  10. Acar K, Aksay E, Oray D, Imamoglu T, Gunay E. Utility of Computed Tomography in Elbow Trauma Patients with Normal X-Ray Study and Positive Elbow Extension Test. J Emerg Med. 2016;50:444-8. doi: 10.1016/j.jemermed.2015.03.009. PubMed PMID: 26712662.
  11. Neubauer J, Benndorf M, Ehritt-Braun C, Reising K, Yilmaz T, Klein C, et al. Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid fractures. Sci Rep. 2018;8:3906. doi: 10.1038/s41598-018-22331-8. PubMed PMID: 29500380; PubMed Central PMCID: PMCPMC5834639.
  12. Cui B, Liu Y, Chen S. Analysis of Sports Knee Fractures Based on X-Ray and Computed Tomography Imaging. Comput Math Methods Med. 2021;2021:9572363. doi: 10.1155/2021/9572363. PubMed PMID: 34899972; PubMed Central PMCID: PMCPMC8654551.
  13. Traub M, Stevenson M, McEvoy S, Briggs G, Lo SK, Leibman S, et al. The use of chest computed tomography versus chest X-ray in patients with major blunt trauma. Injury. 2007;38:43-7. doi: 10.1016/j.injury.2006.07.006. PubMed PMID: 17045268.
  14. Konda SR, Goch AM, Leucht P, Christiano A, Gyftopoulos S, Yoeli G, et al. The use of ultra-low-dose CT scans for the evaluation of limb fractures: is the reduced effective dose using ct in orthopaedic injury (REDUCTION) protocol effective? Bone Joint J. 2016;98:1668-73. doi: 10.1302/0301-620X.98B12.BJJ-2016-0336.R1. PubMed PMID: 27909130.
  15. Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254-63. doi: 10.1148/radiol.2481071451. PubMed PMID: 18566177.
  16. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. doi: 10.1136/bmj.f2360. PubMed PMID: 23694687; PubMed Central PMCID: PMCPMC3660619.
  17. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167:700-7. doi: 10.1001/jamapediatrics.2013.311. PubMed PMID: 23754213; PubMed Central PMCID: PMCPMC3936795.
  18. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078-86. doi: 10.1001/archinternmed.2009.427. PubMed PMID: 20008690; PubMed Central PMCID: PMCPMC4635397.
  19. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499-505. doi: 10.1016/S0140-6736(12)60815-0. PubMed PMID: 22681860; PubMed Central PMCID: PMCPMC3418594.
  20. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169:2071-7. doi: 10.1001/archinternmed.2009.440. PubMed PMID: 20008689; PubMed Central PMCID: PMCPMC6276814.
  21. Caracchini G, Pietragalla M, De Renzis A, Galluzzo M, Carbone M, Zappia M, et al. Talar fractures: radiological and CT evaluation and classification systems. Acta Biomed. 2018;89:151-65. doi: 10.23750/abm.v89i1-S.7019. PubMed PMID: 29350644; PubMed Central PMCID: PMCPMC6179081.
  22. Elojeimy S, Tipnis S, Huda W. Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDI(VOL). Radiat Prot Dosimetry. 2010;141:43-9. doi: 10.1093/rpd/ncq138. PubMed PMID: 20406742.
  23. Dong F, Davros W, Pozzuto J, Reid J. Optimization of kilovoltage and tube current-exposure time product based on abdominal circumference: an oval phantom study for pediatric abdominal CT. AJR Am J Roentgenol. 2012;199:670-6. doi: 10.2214/AJR.10.6153. PubMed PMID: 22915410.
  24. Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: practical advice for radiologists. J Am Coll Radiol. 2013;10:840-6. doi: 10.1016/j.jacr.2013.05.032. PubMed PMID: 24183553.
  25. Kalra MK, Wittram C, Maher MM, Sharma A, Avinash GB, Karau K, et al. Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology. 2003;228:257-64. doi: 10.1148/radiol.2281020606. PubMed PMID: 12750460.
  26. Jin L, Ge X, Lu F, Sun Y, Li C, Gao P, et al. Low-dose CT examination for rib fracture evaluation: A pilot study. Medicine (Baltimore). 2018;97:e11624. doi: 10.1097/MD.0000000000011624. PubMed PMID: 30045304; PubMed Central PMCID: PMCPMC6078715.
  27. Chhetri S, Pendem S, Bharath J. Low kilovoltage and low contrast volume neck CT protocol using iterative reconstruction techniques: A comparison with standard dose protocol. Radiation Physics and Chemistry. 2022;193:109935. doi: 10.1016/j.radphyschem.2021.109935.
  28. Zarei F, Jalli R, Chatterjee S, Ravanfar Haghighi R, Iranpour P, Vardhan Chatterjee V, et al. Evaluation of Ultra-Low-Dose Chest Computed Tomography Images in Detecting Lung Lesions Related to COVID-19: A Prospective Study. Iran J Med Sci. 2022;47:338-49. doi: 10.30476/IJMS.2021.90665.2165. PubMed PMID: 35919083; PubMed Central PMCID: PMCPMC9339117.
  29. Davisson C. Interaction of γ-radiation with matter. Alpha-, beta-and gamma-ray spectroscopy. Amsterdam: Elsevier; 1968. p. 37-78.
  30. Kim Y, Kim YK, Lee BE, Lee SJ, Ryu YJ, Lee JH, et al. Ultra-Low-Dose CT of the Thorax Using Iterative Reconstruction: Evaluation of Image Quality and Radiation Dose Reduction. AJR Am J Roentgenol. 2015;204:1197-202. doi: 10.2214/AJR.14.13629. PubMed PMID: 26001228.
  31. Tuncer K, Topal M, Tekin E, Sade R, Pirimoglu RB, Polat G. The new ultralow dose CT protocol for the diagnosis of fractures of the ankle: A prospective comparative study with conventional CT. J Orthop Surg (Hong Kong). 2020;28:2309499020960238. doi: 10.1177/2309499020960238. PubMed PMID: 32985384.
  32. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37:1-332. doi: 10.1016/j.icrp.2007.10.003. PubMed PMID: 18082557.
  33. Saha GB. Physics and radiobiology of nuclear medicine. Berlin: Springer Science & Business Media; 2012.
  34. Choi Y, Kim DK, Youn SY, Kim H, Choi JI. Unenhanced computed tomography for non-invasive diagnosis of hepatic steatosis with low tube potential protocol. Quant Imaging Med Surg. 2022;12:1348-58. doi: 10.21037/qims-21-474. PubMed PMID: 35111629; PubMed Central PMCID: PMCPMC8739110.
  35. Xin X, Shen J, Yang S, Liu S, Hu A, Zhu B, et al. Improved image quality of low-dose CT combining with iterative model reconstruction algorithm for response assessment in patients after treatment of malignant tumor. Quant Imaging Med Surg. 2018;8:648-57. doi: 10.21037/qims.2018.08.05. PubMed PMID: 30211032; PubMed Central PMCID: PMCPMC6127519.
  36. Xiao M, Zhang M, Lei M, Lin F, Chen Y, Chen J, et al. Diagnostic accuracy of ultra-low-dose CT compared to standard-dose CT for identification of non-displaced fractures of the shoulder, knee, ankle, and wrist. Insights Imaging. 2023;14:40. doi: 10.1186/s13244-023-01389-7. PubMed PMID: 36882617; PubMed Central PMCID: PMCPMC9992673.
  37. Koivisto J, van Eijnatten M, Ludlow J, Kiljunen T, Shi XQ, Wolff J. Comparative dosimetry of radiography device, MSCT device and two CBCT devices in the elbow region. J Appl Clin Med Phys. 2021;22:128-38. doi: 10.1002/acm2.13245. PubMed PMID: 33811787; PubMed Central PMCID: PMCPMC8130242.
  38. Jeon MR, Park HJ, Lee SY, Kang KA, Kim EY, Hong HP, et al. Radiation dose reduction in plain radiography of the full-length lower extremity and full spine. Br J Radiol. 2017;90:20170483. doi: 10.1259/bjr.20170483. PubMed PMID: 28936890; PubMed Central PMCID: PMCPMC6047650.
  39. Health Information and Quality Authority [Internet]. Diagnostic Reference Levels. Guidance on the establishment, use and review of diagnostic reference levels for medical exposure to ionising radiation. [Updated October 2022]. Avilablr from: https://www.hiqa.ie/sites/default/files/2022-11/Diagnostic%20Reference%20Levels_Undertaking%20guidance_Oct%202022.pdf
  40. Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, et al. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol. 2007;28:1444-50. doi: 10.3174/ajnr.A0608. PubMed PMID: 17846188; PubMed Central PMCID: PMCPMC8134402.