Iranian Journal of Medical Sciences

Document Type : Review Article

Authors

1 PerciaVista R&D Co., Shiraz, Iran

2 Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran

3 Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

4 Department of Internal Medicine No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

5 Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran

7 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

8 Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

9 Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

10 Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

11 Department of Radiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

12 Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

10.30476/ijms.2024.103270.3646

Abstract

Background: Lung cancer remains a leading cause of cancer-related mortality, necessitating improved treatment strategies. This study collectively highlights the valuable potential of marine sponges as a source for discovering new anti-tumor agents.
Methods: We conducted a bibliometric analysis to identify anticancer compounds from marine sponges using PubMed (2018–2023). The search included keywords such as “marine sponge,” “cancer,” “neoplasm,” “proliferation,” “cytotoxicity,” “tumor,” “sesquiterpene,” “alkaloid,” and “quinones.” Inclusion criteria focused on studies related to lung cancer and marine sponge-derived compounds, excluding non-cytotoxic activities and unrelated species. Data were extracted in comma-separated values (CSV) format and analyzed via VOSviewer. Molecular docking identified compounds with strong binding to apoptotic receptors in lung cancer cells. PROTOX and Way2Drug tools predicted the pharmacological properties of selected compounds as potential drugs.
Results: The bibliometric analysis identified alkaloids, sesquiterpenes, and quinones as key keywords. Dactyloquinone B-D, dysidavarone D, smenohamien F, and sollasin E demonstrated strong binding to apoptotic receptors in lung cancer cells, suggesting potential as anti-lung cancer drugs. Pharmacological analyses revealed promising effects and potential side effects, highlighting their suitability for further drug development. These findings provide a foundation for novel targeted therapies for lung cancer.
Conclusion: This study highlights the potential of alkaloids and sesquiterpenes derived from marine sponges as promising anti-lung cancer agents, emphasizing the need for further in vitro, in vivo, and clinical investigations to validate their therapeutic efficacy.

Keywords

  1. Yang Y, Li N, Wang TM, Di L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int J Mol Sci. 2021;22. doi: 10.3390/ijms221910827. PubMed PMID: 34639167; PubMed Central PMCID: PMCPMC8509218.
  2. Mithoowani H, Febbraro M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology. Curr Oncol. 2022;29:1828-39. doi: 10.3390/curroncol29030150. PubMed PMID: 35323350; PubMed Central PMCID: PMCPMC8946954.
  3. Sabir F, Qindeel M, Zeeshan M, Ul Ain Q, Rahdar A, Barani M, et al. Onco-receptors targeting in lung cancer via application of surface-modified and hybrid nanoparticles: A cross-disciplinary review. Processes. 2021;9:621. doi: 10.3390/pr9040621.
  4. Miri MR, Zare A, Saberzadeh J, Baghban N, Nabipour I, Tamadon A. Anti-lung Cancer Marine Compounds: A Review. Ther Innov Regul Sci. 2022;56:191-205. doi: 10.1007/s43441-022-00375-3. PubMed PMID: 35025082.
  5. Baghban N, Khoradmehr A, Nabipour I, Tamadon A, Ullah M. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. Gold Bulletin. 2022;55:53-63. doi: 10.1007/s13404-021-00304-6.
  6. Esposito R, Federico S, Glaviano F, Somma E, Zupo V, Costantini M. Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. Int J Mol Sci. 2022;23. doi: 10.3390/ijms231810680. PubMed PMID: 36142592; PubMed Central PMCID: PMCPMC9502410.
  7. Abdelhameed RFA, Habib ES, Eltahawy NA, Hassanean HA, Ibrahim AK, Mohammed AF, et al. New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri. Mar Drugs. 2020;18. doi: 10.3390/md18050241. PubMed PMID: 32375235; PubMed Central PMCID: PMCPMC7281077.
  8. El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, et al. Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Mar Drugs. 2019;17. doi: 10.3390/md17080465. PubMed PMID: 31395834; PubMed Central PMCID: PMCPMC6723499.
  9. Nadar VM, Manivannan S, Chinnaiyan R, Govarthanan M, Ponnuchamy K. Review on marine sponge alkaloid, aaptamine: A potential antibacterial and anticancer drug. Chem Biol Drug Des. 2022;99:103-10. doi: 10.1111/cbdd.13932. PubMed PMID: 34331335.
  10. Zare A, Afshar A, Khoradmehr A, Baghban N, Mohebbi G, Barmak A, et al. Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells. Mar Drugs. 2023;21. doi: 10.3390/md21030168. PubMed PMID: 36976217; PubMed Central PMCID: PMCPMC10057638.
  11. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373-D80. doi: 10.1093/nar/gkac956. PubMed PMID: 36305812; PubMed Central PMCID: PMCPMC9825602.
  12. Ki DW, Kodama T, El-Desoky AH, Wong CP, Nguyen HM, Do KM, et al. Chemical Constituents of the Vietnamese Marine Sponge Gelliodes sp. and Their Cytotoxic Activities. Chem Biodivers. 2020;17:e2000303. doi: 10.1002/cbdv.202000303. PubMed PMID: 32592287.
  13. Zhang H, Loveridge ST, Tenney K, Crews P. A new 3-alkylpyridine alkaloid from the marine sponge Haliclona sp. and its cytotoxic activity. Nat Prod Res. 2016;30:1262-5. doi: 10.1080/14786419.2015.1054826. PubMed PMID: 26165203; PubMed Central PMCID: PMCPMC5182040.
  14. Sirimangkalakitti N, Yokoya M, Chamni S, Chanvorachote P, Plubrukrn A, Saito N, et al. Synthesis and Absolute Configuration of Acanthodendrilline, a New Cytotoxic Bromotyrosine Alkaloid from the Thai Marine Sponge Acanthodendrilla sp. Chem Pharm Bull (Tokyo). 2016;64:258-62. doi: 10.1248/cpb.c15-00901. PubMed PMID: 26936051.
  15. Dung DT, Hang DTT, Yen PH, Quang TH, Nhiem NX, Tai BH, et al. Macrocyclic bis-quinolizidine alkaloids from Xestospongia muta. Nat Prod Res. 2019;33:400-6. doi: 10.1080/14786419.2018.1455043. PubMed PMID: 29595068.
  16. Lhullier C, de Oliveira Tabalipa E, Nienkotter Sarda F, Sandjo LP, Zanchett Schneider NF, Carraro JL, et al. Clerodane Diterpenes from the Marine Sponge Raspailia bouryesnaultae Collected in South Brazil. Mar Drugs. 2019;17. doi: 10.3390/md17010057. PubMed PMID: 30654553; PubMed Central PMCID: PMCPMC6356680.
  17. Ibrahim S, Mohamed G, Al Haidari R, El-Kholy A, Zayed M. Ingenine F: A New Cytotoxic Tetrahydro Carboline Alkaloid from the Indonesian Marine Sponge Acanthostrongylophora ingens. Pharmacogn Mag. 2018;14:231-4. doi: 10.4103/pm.pm_489_17. PubMed PMID: 29720837; PubMed Central PMCID: PMCPMC5909321.
  18. Ibrahim SR, Mohamed GA. Ingenine E, a new cytotoxic beta-carboline alkaloid from the Indonesian sponge Acanthostrongylophora ingens. J Asian Nat Prod Res. 2017;19:504-9. doi: 10.1080/10286020.2016.1213723. PubMed PMID: 27588456.
  19. Tang WZ, Yang ZZ, Wu W, Tang J, Sun F, Wang SP, et al. Imidazole Alkaloids and Their Zinc Complexes from the Calcareous Marine Sponge Leucetta chagosensis. J Nat Prod. 2018;81:894-900. doi: 10.1021/acs.jnatprod.7b01006. PubMed PMID: 29648818.
  20. Petsri K, Chamni S, Suwanborirux K, Saito N, Chanvorachote P. Renieramycin T Induces Lung Cancer Cell Apoptosis by Targeting Mcl-1 Degradation: A New Insight in the Mechanism of Action. Mar Drugs. 2019;17. doi: 10.3390/md17050301. PubMed PMID: 31117253; PubMed Central PMCID: PMCPMC6562878.
  21. Kwon OS, Kim D, Kim H, Lee YJ, Lee HS, Sim CJ, et al. Bromopyrrole Alkaloids from the Sponge Agelas kosrae. Mar Drugs. 2018;16. doi: 10.3390/md16120513. PubMed PMID: 30563015; PubMed Central PMCID: PMCPMC6316234.
  22. Kwak CH, Jin L, Han JH, Han CW, Kim E, Cho M, et al. Ilimaquinone Induces the Apoptotic Cell Death of Cancer Cells by Reducing Pyruvate Dehydrogenase Kinase 1 Activity. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21176021. PubMed PMID: 32825675; PubMed Central PMCID: PMCPMC7504051.
  23. Huyen LT, Hang DT, Nhiem NX, Tai BH, Anh HLT, Quang TH, et al. Sesquiterpene quinones and diterpenes from Smenospongia cerebriformis and their cytotoxic activity. Natural Product Communications. 2017;12:1934578X1701200402. doi: 10.1177/1934578X1701200402.
  24. Ito T, Nguyen HM, Win NN, Vo HQ, Nguyen HT, Morita H. Three new sesquiterpene aminoquinones from a Vietnamese Spongia sp. and their biological activities. J Nat Med. 2018;72:298-303. doi: 10.1007/s11418-017-1130-5. PubMed PMID: 28939966.
  25. Nguyen HM, Ito T, Kurimoto SI, Ogawa M, Win NN, Hung VQ, et al. New merosesquiterpenes from a Vietnamese marine sponge of Spongia sp. and their biological activities. Bioorg Med Chem Lett. 2017;27:3043-7. doi: 10.1016/j.bmcl.2017.05.060. PubMed PMID: 28558970.
  26. Calcabrini C, Catanzaro E, Bishayee A, Turrini E, Fimognari C. Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs. 2017;15. doi: 10.3390/md15100310. PubMed PMID: 29027954; PubMed Central PMCID: PMCPMC5666418.
  27. Bai LY, Su JH, Chiu CF, Lin WY, Hu JL, Feng CH, et al. Antitumor Effects of a Sesquiterpene Derivative from Marine Sponge in Human Breast Cancer Cells. Mar Drugs. 2021;19. doi: 10.3390/md19050244. PubMed PMID: 33925873; PubMed Central PMCID: PMCPMC8144972.
  28. Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, et al. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res. 2020;161:105165. doi: 10.1016/j.phrs.2020.105165. PubMed PMID: 32835868.
  29. Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol. 2017;30:13-37. doi: 10.1021/acs.chemrestox.6b00256. PubMed PMID: 27617882; PubMed Central PMCID: PMCPMC5241708.
  30. Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, et al. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Mar Drugs. 2023;21. doi: 10.3390/md21050283. PubMed PMID: 37233477; PubMed Central PMCID: PMCPMC10223633.
  31. Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs. 2024;22. doi: 10.3390/md22040143. PubMed PMID: 38667760; PubMed Central PMCID: PMCPMC11051506.
  32. Zhang J, Tang M, Shang J. PPARgamma Modulators in Lung Cancer: Molecular Mechanisms, Clinical Prospects, and Challenges. Biomolecules. 2024;14. doi: 10.3390/biom14020190. PubMed PMID: 38397426; PubMed Central PMCID: PMCPMC10886696.
  33. Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019;24:312-25. doi: 10.1007/s10495-019-01515-1. PubMed PMID: 30710195.
  34. Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines. 2024;12. doi: 10.3390/biomedicines12030563. PubMed PMID: 38540176; PubMed Central PMCID: PMCPMC10967781.
  35. Zhang R, Dong Y, Sun M, Wang Y, Cai C, Zeng Y, et al. Tumor-associated inflammatory microenvironment in non-small cell lung cancer: correlation with FGFR1 and TLR4 expression via PI3K/Akt pathway. J Cancer. 2019;10:1004-12. doi: 10.7150/jca.26277. PubMed PMID: 30854106; PubMed Central PMCID: PMCPMC6400805.
  36. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed PMID: 28256516; PubMed Central PMCID: PMCPMC5335600.
  37. Montanari F, Ecker GF. Prediction of drug-ABC-transporter interaction--Recent advances and future challenges. Adv Drug Deliv Rev. 2015;86:17-26. doi: 10.1016/j.addr.2015.03.001. PubMed PMID: 25769815; PubMed Central PMCID: PMCPMC6422311.
  38. Ilhan HA, Pulat ÇÇ. Cytotoxic and antitumor compounds from marine invertebrates. Encyclopedia of Marine Biotechnology. 2020;4:2529-84. doi: 10.1002/9781119143802.ch115.
  39. Wang Y, Goh KY, Chen Z, Lee WX, Choy SM, Fong JX, et al. A Novel TP53 Gene Mutation Sustains Non-Small Cell Lung Cancer through Mitophagy. Cells. 2022;11. doi: 10.3390/cells11223587. PubMed PMID: 36429016; PubMed Central PMCID: PMCPMC9688643.
  40. Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci. 2023;24. doi: 10.3390/ijms242417542. PubMed PMID: 38139370; PubMed Central PMCID: PMCPMC10743672.
  41. Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res. 2019;20:222. doi: 10.1186/s12931-019-1192-x. PubMed PMID: 31623614; PubMed Central PMCID: PMCPMC6798356.
  42. Kleczko EK, Kwak JW, Schenk EL, Nemenoff RA. Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer. Front Immunol. 2019;10:954. doi: 10.3389/fimmu.2019.00954. PubMed PMID: 31134065; PubMed Central PMCID: PMCPMC6522855.
  43. Pereira F, Ferreira A, Reis CA, Sousa MJ, Oliveira MJ, Preto A. KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications. Cells. 2022;11. doi: 10.3390/cells11030398. PubMed PMID: 35159208; PubMed Central PMCID: PMCPMC8833974.
  44. Kaufman PA, Awada A, Twelves C, Yelle L, Perez EA, Velikova G, et al. Phase III open-label randomized study of eribulin mesylate versus capecitabine in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2015;33:594-601. doi: 10.1200/JCO.2013.52.4892. PubMed PMID: 25605862; PubMed Central PMCID: PMCPMC4463422.