Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Medical Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Medical Sciences, School of Nursing, University of Warith Al-Anbiyaa, Iraq

4 Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

5 Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

6 Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran

7 Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

8 Department of Human Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

9 Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

10.30476/ijms.2025.102711.3587

Abstract

Background: Peritendinous adhesion as a common post-surgical complication usually occurs as a result of a large portion of sports and hard job-related injuries. This study aims to evaluate the repurposed potential of the immunosuppressive approved drug, tacrolimus, in decreasing adhesion band formation post-Achilles tendon surgeries in an animal model.
Methods: Rats were randomly assigned to four groups: control, sham with surgical intervention but no adhesion, positive control group with surgical transection and adhesion received no treatment, tacrolimus group was the same as the positive control group except that rats were treated with 2 mg/Kg/day tacrolimus orally for 21 days. The anti-inflammatory and fibrinolytic properties of oral tacrolimus treatment in attenuating the formation of adhesion bands were analyzed by One-way ANOVA or the Kruskal-Wallis test.
Results: Tacrolimus decreased the length (P=0.001), density (P=0.001), grading (P=0.023), severity (P=0.001), and thickness (P=0.008) of post-surgical adhesion bands compared to the untreated group. Histopathological changes and recruitment of inflammatory cells to the tendon tissue sections were attenuated in the tacrolimus-treated group (P=0.001) in comparison with the positive control group. Compared to the untreated group, tacrolimus treatment decreased the expression of IL-1β (P=0.059) in the tendon tissue, but the difference was not statistically significant. Moreover, tacrolimus elicited anti-fibrotic responses by reducing the expression of tissue growth factor-β (TGF-β) in the tendon and inhibiting collagen deposition, fibrosis quantity (P=0.001), fibrosis grading (P=0.001), and total fibrosis scores (P=0.001), as visualized by Masson’s trichrome staining.
Conclusion: These results support the protective properties of tacrolimus in decreasing post-operative adhesion band formation in the animal model.

Highlights

Seyedeh Elnaz Nazari (Google Scholar)

Elnaz Ghorbani (Google Scholar)

Majid Khazaei (Google Scholar)

Keywords

  1. Tao M, Liang F, He J, Ye W, Javed R, Wang W, et al. Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomater. 2021;134:160-76. doi: 10.1016/j.actbio.2021.07.038. PubMed PMID: 34303866.
  2. Arjmand MH, Zahedi-Avval F, Barneh F, Mousavi SH, Asgharzadeh F, Hashemzehi M, et al. Intraperitoneal Administration of Telmisartan Prevents Postsurgical Adhesion Band Formation. J Surg Res. 2020;248:171-81. doi: 10.1016/j.jss.2019.10.029. PubMed PMID: 31923833.
  3. Hu Q, Xia X, Kang X, Song P, Liu Z, Wang M, et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion. Int J Biol Sci. 2021;17:298-306. doi: 10.7150/ijbs.54403. PubMed PMID: 33390851; PubMed Central PMCID: PMCPMC7757036.
  4. Soleimani A, Asgharzadeh F, Rahmani F, Avan A, Mehraban S, Fakhraei M, et al. Novel oral transforming growth factor-beta signaling inhibitor potently inhibits postsurgical adhesion band formation. J Cell Physiol. 2020;235:1349-57. doi: 10.1002/jcp.29053. PubMed PMID: 31313829.
  5. Nichols AEC, Best KT, Loiselle AE. The cellular basis of fibrotic tendon healing: challenges and opportunities. Transl Res. 2019;209:156-68. doi: 10.1016/j.trsl.2019.02.002. PubMed PMID: 30776336; PubMed Central PMCID: PMCPMC6545261.
  6. Kazemi K, Hosseinzadeh A, Shahriarirad R, Nikeghbalian S, Kamran H, Hosseinpour P, et al. Comparison of Oral Sirolimus, Prednisolone, and Combination of Both in Experimentally Induced Peritoneal Adhesion. J Surg Res. 2022;276:168-73. doi: 10.1016/j.jss.2022.02.047. PubMed PMID: 35344743.
  7. İnal A, Saydam M. Effect of intraperitoneal and systemic sirolimus administration on postoperative peritoneal adhesions in rats. Journal of Basic and Clinical Health Sciences. 2021;5:195-200. doi: 10.30621/jbachs.977476.
  8. Chavant A, Fonrose X, Gautier-Veyret E, Hilleret MN, Roustit M, Stanke-Labesque F. Variability of Tacrolimus Trough Concentration in Liver Transplant Patients: Which Role of Inflammation? Pharmaceutics. 2021;13. doi: 10.3390/pharmaceutics13111960. PubMed PMID: 34834375; PubMed Central PMCID: PMCPMC8623792.
  9. Soubhia RM, Mendes GE, Mendonca FZ, Baptista MA, Cipullo JP, Burdmann EA. Tacrolimus and nonsteroidal anti-inflammatory drugs: an association to be avoided. Am J Nephrol. 2005;25:327-34. doi: 10.1159/000086569. PubMed PMID: 15976495.
  10. Wen R, editor Comparison of cyclosporin A and tacrolimus in the field of organ transplantation. IOP Conference Series: Earth and Environmental Science; 2020. doi: 10.1088/1755-1315/565/1/012052.
  11. Su L, Ji J, Bian J, Fu Y, Ge Y, Yuan Z. Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice. Int Immunopharmacol. 2012;14:606-12. doi: 10.1016/j.intimp.2012.09.010. PubMed PMID: 23032068.
  12. Vafadari R, Kraaijeveld R, Weimar W, Baan CC. Tacrolimus inhibits NF-kappaB activation in peripheral human T cells. PLoS One. 2013;8:e60784. doi: 10.1371/journal.pone.0060784. PubMed PMID: 23573283; PubMed Central PMCID: PMCPMC3613409.
  13. Dheer D, Jyoti, Gupta PN, Shankar R. Tacrolimus: An updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci. 2018;114:217-27. doi: 10.1016/j.ejps.2017.12.017. PubMed PMID: 29277665.
  14. Kim HJ, Lee S, Koo YJ, Kwon E, Kim HJ, Choi JY, et al. Tacrolimus for Treating Orbital and Cranial Form of Idiopathic Inflammatory Pseudotumors. J Clin Neurol. 2020;16:674-80. doi: 10.3988/jcn.2020.16.4.674. PubMed PMID: 33029975; PubMed Central PMCID: PMCPMC7541994.
  15. Zhang S, Wang H, Liu Y, Yang W, Liu J, Han Y, et al. Tacrolimus ameliorates tubulointerstitial inflammation in diabetic nephropathy via inhibiting the NFATc1/TRPC6 pathway. J Cell Mol Med. 2020;24:9810-24. doi: 10.1111/jcmm.15562. PubMed PMID: 32779844; PubMed Central PMCID: PMCPMC7520323.
  16. Ren Y, Jian X, Zhang Z, Ning Q, Kan B, Kong L. Effects of tacrolimus on the TGF beta1/SMAD signaling pathway in paraquat exposed rat alveolar type II epithelial cells. Mol Med Rep. 2020;22:3687-94. doi: 10.3892/mmr.2020.11453. PubMed PMID: 33000210; PubMed Central PMCID: PMCPMC7533447.
  17. Ishiyama N, Moro T, Ohe T, Miura T, Ishihara K, Konno T, et al. Reduction of Peritendinous adhesions by hydrogel containing biocompatible phospholipid polymer MPC for tendon repair. J Bone Joint Surg Am. 2011;93:142-9. doi: 10.2106/JBJS.I.01634. PubMed PMID: 21248211.
  18. Tang JB, Shi D, Zhang QG. Biomechanical and histologic evaluation of tendon sheath management. J Hand Surg Am. 1996;21:900-8. doi: 10.1016/S0363-5023(96)80212-7. PubMed PMID: 8891993.
  19. Moran SL, Ryan CK, Orlando GS, Pratt CE, Michalko KB. Effects of 5-fluorouracil on flexor tendon repair. J Hand Surg Am. 2000;25:242-51. doi: 10.1053/jhsu.2000.jhsu25a0242. PubMed PMID: 10722815.
  20. Muhar AM, Putra A, Warli SM, Munir D. Hypoxia-Mesenchymal Stem Cells Inhibit Intra-Peritoneal Adhesions Formation by Upregulation of the IL-10 Expression. Open Access Maced J Med Sci. 2019;7:3937-43. doi: 10.3889/oamjms.2019.713. PubMed PMID: 32165932; PubMed Central PMCID: PMCPMC7061407.
  21. Rahmani F, Asgharzadeh F, Avan A, Barneh F, Parizadeh MR, Ferns GA, et al. Rigosertib potently protects against colitis-associated intestinal fibrosis and inflammation by regulating PI3K/AKT and NF-kappaB signaling pathways. Life Sci. 2020;249:117470. doi: 10.1016/j.lfs.2020.117470. PubMed PMID: 32135184.
  22. Bogacz A, Wolek M, Sienko J, Czerny B, Machalinski B, Olbromski P, et al. Influence of TGFB1 and CTLA4 polymorphisms on calcineurin inhibitors dose and risk of acute rejection in renal transplantation. Sci Rep. 2021;11:17531. doi: 10.1038/s41598-021-96457-7. PubMed PMID: 34475433; PubMed Central PMCID: PMCPMC8413317.
  23. Siligato R, Cernaro V, Nardi C, De Gregorio F, Gembillo G, Costantino G, et al. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs. 2018;27:839-79. doi: 10.1080/13543784.2018.1540587. PubMed PMID: 30360670.
  24. Kim CS, Mathew AP, Vasukutty A, Uthaman S, Joo SY, Bae EH, et al. Glycol chitosan-based tacrolimus-loaded nanomicelle therapy ameliorates lupus nephritis. J Nanobiotechnology. 2021;19:109. doi: 10.1186/s12951-021-00857-w. PubMed PMID: 33865397; PubMed Central PMCID: PMCPMC8052756.
  25. Mailey B, O’Shea G, Romanelli M, West B. Systemic Immunosuppression for Prevention of Recurrent Tendon Adhesions. Plast Reconstr Surg Glob Open. 2021;9:e3834. doi: 10.1097/GOX.0000000000003834. PubMed PMID: 34667696; PubMed Central PMCID: PMCPMC8519255.
  26. Yan L, Li X, Wang J, Sun Y, Wang D, Gu J, et al. Immunomodulatory effectiveness of tacrolimus in preventing epidural scar adhesion after laminectomy in rat model. Eur J Pharmacol. 2013;699:194-9. doi: 10.1016/j.ejphar.2012.11.037. PubMed PMID: 23220162.
  27. Ma A, Qi S, Xu D, Ouyang J, Zhang X, Wang Y, et al. Immunological Evaluation of Cytokins, Apoptosis, and Proliferation on Tacrolimus and Sirolimus Induced Long-Term Renal Allograft Survival in Nonhuman Primates. Transplantation. 2004;78:637. doi: 10.1097/00007890-200407271-01715.
  28. Ma R, Wang Y, Xu Y, Wang R, Wang X, Yu N, et al. Tacrolimus Protects Podocytes from Apoptosis via Downregulation of TRPC6 in Diabetic Nephropathy. J Diabetes Res. 2021;2021:8832114. doi: 10.1155/2021/8832114. PubMed PMID: 34095318; PubMed Central PMCID: PMCPMC8163546.
  29. Ulug P, Oner G, Sayar I, Nayki U, Nayki C, Peker K. Effects of Immunusuppressive Agents on the Postoperative Adhesion Formation in a Rat Uterine Horn Adhesion Model. International Journal of Academic Research. 2014;6.
  30. Wu CS, Lan CC, Kuo HY, Chai CY, Chen WT, Chen GS. Differential regulation of nuclear factor-kappa B subunits on epidermal keratinocytes by ultraviolet B and tacrolimus. Kaohsiung J Med Sci. 2012;28:577-85. doi: 10.1016/j.kjms.2012.04.023. PubMed PMID: 23140765; PubMed Central PMCID: PMCPMC11916127.
  31. Efe C, Taii HA, Ytting H, Aehling N, Bhanji RA, Hagstrom H, et al. Tacrolimus and Mycophenolate Mofetil as Second-Line Therapies for Pediatric Patients with Autoimmune Hepatitis. Dig Dis Sci. 2018;63:1348-54. doi: 10.1007/s10620-018-5011-x. PubMed PMID: 29569003.
  32. Li X, Shang X, Sun L. Tacrolimus reduces atherosclerotic plaque formation in ApoE(-/-) mice by inhibiting NLRP3 inflammatory corpuscles. Exp Ther Med. 2020;19:1393-9. doi: 10.3892/etm.2019.8340. PubMed PMID: 32010314; PubMed Central PMCID: PMCPMC6966157.