Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Dermatology, University Hospitals Coventry & Warwickshire, Coventry, UK

3 Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/ijms.2025.104043.3750

Abstract

Background: Vitiligo is an autoimmune skin disorder in which apoptosis plays an exceptionally vital role in its occurrence. Research has shown a strong association between the presence of polymorphisms and the occurrence of diseases. This study aimed to determine the association of BAX-248G>A and BCL2-938C>A polymorphisms with vitiligo.
Methods: This cross-sectional study utilized the tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS PCR) in a cohort of vitiligo patients referred to the esteemed dermatology department of Shahid Faqihi Hospital in Shiraz between 2022 and 2023. The Chi square test and t test were used to analyze data, and logistic regression was employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for vitiligo risk associated with BAX-248G>A, BCL2-938 C>A polymorphisms. P values<0.05 indicated statistical significance.
Results: From 112 healthy individuals and 107 vitiligo patients, our research uncovered a significant association between the C allele (BCL2-938C>A) and the chance of vitiligo, with the CC genotype increasing the risk of developing this disease (OR=2.59, 95% CI=1.66-4.05, P<0.001). We also found that in individuals with the GG genotype (BAX-248G>A), the risk of vitiligo is higher (OR=4.576, 95% CI=1.19-17.60, P=0.027). Parental kinship was strongly correlated with vitiligo (OR=1.83, 95% CI=1.00-3.33, P=0.048). Moreover, no significant association was observed between smoking and vitiligo. 
Conclusion: The results showed that BCL2-938C>A and BAX-248G>A polymorphisms may play a role in the pathogenesis of vitiligo and can be used as prognosis markers. However, further studies in larger groups and different populations are needed. 

Highlights

Afrooz Daneshparvar (Google Scholar)

Nasrin Hamidizadeh (Google Scholar)

Keywords

  1. Elbuluk N, Ezzedine K. Quality of Life, Burden of Disease, Co-morbidities, and Systemic Effects in Vitiligo Patients. Dermatol Clin. 2017;35:117-28. doi: 10.1016/j.det.2016.11.002. PubMed PMID: 28317521.
  2. Spritz RA, Andersen GH. Genetics of Vitiligo. Dermatol Clin. 2017;35:245-55. doi: 10.1016/j.det.2016.11.013. PubMed PMID: 28317533; PubMed Central PMCID: PMCPMC5362127.
  3. Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev. 2021;41:1138-66. doi: 10.1002/med.21754. PubMed PMID: 33200838; PubMed Central PMCID: PMCPMC7983894.
  4. Bialczyk A, Welniak A, Kaminska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther. 2023;27:723-39. doi: 10.1007/s40291-023-00672-z. PubMed PMID: 37737953; PubMed Central PMCID: PMCPMC10590312.
  5. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. doi: 10.3389/fonc.2022.985363. PubMed PMID: 36313628; PubMed Central PMCID: PMCPMC9597512.
  6. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001;117:333-40. doi: 10.1046/j.0022-202x.2001.01409.x. PubMed PMID: 11511312.
  7. Xuan Y, Yang Y, Xiang L, Zhang C. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. Oxid Med Cell Longev. 2022;2022:8498472. doi: 10.1155/2022/8498472. PubMed PMID: 35103096; PubMed Central PMCID: PMCPMC8800607.
  8. Mirmajidi SH, Najafi M, Mirmajidi ST, Nasri Nasrabadi N. Study of regulatory promoter polymorphism (-248 G>A) of Bax gene in patients with gastric cancer in the northern provinces of Iran. Gastroenterol Hepatol Bed Bench. 2016;9:36-44. PubMed PMID: 26744613; PubMed Central PMCID: PMCPMC4702040.
  9. Moawadh MS, Mir R, Tayeb FJ, Asim O, Ullah MF. Molecular Evaluation of the Impact of Polymorphic Variants in Apoptotic (Bcl-2/Bax) and Proinflammatory Cytokine (TNF-alpha/IL-8) Genes on the Susceptibility and Progression of Myeloproliferative Neoplasms: A Case-Control Biomarker Study. Curr Issues Mol Biol. 2023;45:3933-52. doi: 10.3390/cimb45050251. PubMed PMID: 37232720; PubMed Central PMCID: PMCPMC10217376.
  10. Chiarella P, Capone P, Sisto R. Contribution of Genetic Polymorphisms in Human Health. Int J Environ Res Public Health. 2023;20. doi: 10.3390/ijerph20020912. PubMed PMID: 36673670; PubMed Central PMCID: PMCPMC9858723.
  11. Gummadi AC, Guddati AK. Genetic Polymorphisms in Pharmaceuticals and Chemotherapy. World J Oncol. 2021;12:149-54. doi: 10.14740/wjon1405. PubMed PMID: 34804277; PubMed Central PMCID: PMCPMC8577603.
  12. Marchioro HZ, Silva de Castro CC, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol. 2022;97:478-90. doi: 10.1016/j.abd.2021.09.008. PubMed PMID: 35643735; PubMed Central PMCID: PMCPMC9263675.
  13. Su Q, Wang F, Dong Z, Chen M, Cao R. IFNgamma induces apoptosis in human melanocytes by activating the JAK1/STAT1 signaling pathway. Mol Med Rep. 2020;22:3111-6. doi: 10.3892/mmr.2020.11403. PubMed PMID: 32945463; PubMed Central PMCID: PMCPMC7453586.
  14. Wu X, Yang Y, Xiang L, Zhang C. The fate of melanocyte: Mechanisms of cell death in vitiligo. Pigment Cell Melanoma Res. 2021;34:256-67. doi: 10.1111/pcmr.12955. PubMed PMID: 33346939.
  15. Olbromski PJ, Bogacz A, Bukowska M, Kaminski A, Moszynski R, Pawlik P, et al. Analysis of the Polymorphisms and Expression Levels of the BCL2, BAX and c-MYC Genes in Patients with Ovarian Cancer. Int J Mol Sci. 2023;24. doi: 10.3390/ijms242216309. PubMed PMID: 38003498; PubMed Central PMCID: PMCPMC10671037.
  16. Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int J Mol Sci. 2021;22. doi: 10.3390/ijms22126454. PubMed PMID: 34208629; PubMed Central PMCID: PMCPMC8235176.
  17. Quach NE, Yang K, Chen R, Tu J, Xu M, Tu XM, et al. Post-hoc power analysis: a conceptually valid approach for power based on observed study data. Gen Psychiatr. 2022;35:e100764. doi: 10.1136/gpsych-2022-100764. PubMed PMID: 36189182; PubMed Central PMCID: PMCPMC9472103.
  18. Munoz C, Gomez Talquenca S, Volpe ML. Tetra primer ARMS-PCR for identification of SNP in beta-tubulin of Botrytis cinerea, responsible of resistance to benzimidazole. J Microbiol Methods. 2009;78:245-6. doi: 10.1016/j.mimet.2009.06.007. PubMed PMID: 19539666.
  19. Hirata H, Hinoda Y, Nakajima K, Kikuno N, Suehiro Y, Tabatabai ZL, et al. The bcl2 -938CC genotype has poor prognosis and lower survival in renal cancer. J Urol. 2009;182:721-7. doi: 10.1016/j.juro.2009.03.081. PubMed PMID: 19539330.
  20. Volkmann N, Marassi FM, Newmeyer DD, Hanein D. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ. 2014;21:206-15. doi: 10.1038/cdd.2013.153. PubMed PMID: 24162659; PubMed Central PMCID: PMCPMC3890954.
  21. Moawad MS, Tayeb FJ, Mir R. Evaluation of polymorphic variants in apoptotic genes (Bcl-2/Bax) and their roles in the development of myeloproliferative disorders (hematological malignancies) a case-controlled study. Research Square. 2022. doi: 10.21203/rs.3.rs-1386196/v1.
  22. Ma G, Jiang D, Huang J. Genetic association of the polymorphisms in apoptosis-related genes with osteoarthritis susceptibility in Chinese Han population. Int J Clin Exp Pathol. 2018;11:2221-6. PubMed PMID: 31938334; PubMed Central PMCID: PMCPMC6958211.
  23. Wang WL, Tao YP, Han XL, Li X, Zi YM, Yang C, et al. Role of polymorphisms in BCL-2 and BAX genes in modulating the risk of developing non-Hodgkin lymphoma. Leuk Lymphoma. 2014;55:1602-8. doi: 10.3109/10428194.2013.842992. PubMed PMID: 24024471.
  24. Yao Z, Yang B, Liu Z, Li W, He Q, Peng X. Genetic polymorphisms of Bcl-2 promoter in cancer susceptibility and prognosis: a meta-analysis. Oncotarget. 2017;8:25270-8. doi: 10.18632/oncotarget.15751. PubMed PMID: 28445963; PubMed Central PMCID: PMCPMC5421928.
  25. Cingeetham A, Vuree S, Dunna NR, Gorre M, Nanchari SR, Edathara PM, et al. Influence of BCL2-938C>A and BAX-248G>A promoter polymorphisms in the development of AML: case-control study from South India. Tumour Biol. 2015;36:7967-76. doi: 10.1007/s13277-015-3457-4. PubMed PMID: 25957891.
  26. Bakirov BA, Karimov D, Viktorova T. Polymorphism of apoptosis regulatory and growth factor genes in patients with chronic lymphocytic leukemia. Russian Open Medical Journal. 2012;1:0101.
  27. Enjuanes A, Benavente Y, Bosch F, Martin-Guerrero I, Colomer D, Perez-Alvarez S, et al. Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of chronic lymphocytic leukemia. Cancer Res. 2008;68:10178-86. doi: 10.1158/0008-5472.CAN-08-2221. PubMed PMID: 19074885.
  28. Fernandes AT, Rocha NP, Vendrame E, Russomano F, Grinsztejn BJ, Friedman RK, et al. Polymorphism in apoptotic BAX (-248G>A) gene but not in anti-apoptotic BCL2 (-938C>A) gene and its protein and mRNA expression are associated with cervical intraepithelial neoplasia. Apoptosis. 2015;20:1347-57. doi: 10.1007/s10495-015-1156-7. PubMed PMID: 26272263.
  29. Al-Zubaidy HFS, Majeed SR, Al-Koofee DAF. Evaluation of Bax and BCL 2 Genes Polymorphisms in Iraqi Women with Breast Cancer. Arch Razi Inst. 2022;77:799-808. doi: 10.22092/ARI.2022.357090.1968. PubMed PMID: 36284943; PubMed Central PMCID: PMCPMC9548264.
  30. Patil S, Gautam M, Nadkarni N, Saboo N, Godse K, Setia MS. Gender differences in clinicoepidemiological features of vitiligo: a cross-sectional analysis. ISRN Dermatol. 2014;2014:186197. doi: 10.1155/2014/186197. PubMed PMID: 24696786; PubMed Central PMCID: PMCPMC3947737.
  31. Lee YB, Lee JH, Lee SY, Yu DS, Han KD, Park YG. Association between vitiligo and smoking: A nationwide population-based study in Korea. Sci Rep. 2020;10:6231. doi: 10.1038/s41598-020-63384-y. PubMed PMID: 32277157; PubMed Central PMCID: PMCPMC7148336.
  32. Alenizi DA. Consanguinity pattern and heritability of Vitiligo in Arar, Saudi Arabia. J Family Community Med. 2014;21:13-6. doi: 10.4103/2230-8229.128767. PubMed PMID: 24696629; PubMed Central PMCID: PMCPMC3966091.
  33. Molla A, Alayoubi AM, Jannadi R. First Cousin Marriages and the Risk of Childhood-Onset Vitiligo: Exploring the Genetic Background: A Cross-Sectional Study. Clin Cosmet Investig Dermatol. 2024;17:1471-9. doi: 10.2147/CCID.S470937. PubMed PMID: 38919171; PubMed Central PMCID: PMCPMC11198003.