Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

2 Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

3 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

4 Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran

5 Department of stem cells technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran

10.30476/ijms.2025.105176.3884

Abstract

Background: Gene therapy introduces therapeutic genes into cancer cells to inhibit tumor growth or induce apoptosis. The htsFLT01 gene, a novel anti-angiogenic construct, encodes the sFLT01 protein that functions as a Vascular Endothelial Growth Factor (VEGF) decoy receptor, impeding pathological angiogenesis. When combined with the MiRGD nanocarrier—a versatile peptide-based delivery system optimized for specificity, biocompatibility, and low toxicity—the htsFLT01/MiRGD complex offers a potent strategy against breast cancer.
Methods: The htsFLT01 gene was designed and constructed in previous studies. The MiRGD peptide was expressed and purified using Ni-NTA affinity chromatography in the E. coli C41 (DE3) expression strain. The potency of this peptide, along with the cell viability and toxicity of the nanoparticles, was previously evaluated in MCF7 cell culture. After transfection with the htsFLT01/MiRGD nanocomplex at a nitrogen-to-phosphorus (N/P) ratio of 14, cell lysates were collected, and expression analysis of the key genes, including Fas-Associated Death Domain Protein (FADD), Caspase-8 (CASP8), and Tumor Protein P53 (TP53), was conducted based on findings from prior research. Statistical analyses were conducted using IBM SPSS Statistics version 22 (IBM, USA) and REST 2009 software.  
Results: The htsFLT01 gene was previously designed and constructed, and the MiRGD nanocarrier was successfully produced and purified. This nanocarrier exhibited the best performance at an N/P ratio of 14. This study evaluated the effect of this complex on apoptosis induction in MCF7 cells via the extrinsic apoptotic pathway, revealing increased expression of FADD, CASP8, and p53 genes. 
Conclusion: These findings highlight a synergistic relationship between anti-angiogenic and pro-apoptotic mechanisms, offering promising avenues for future breast cancer therapies.

Highlights

Mohadeseh Khoshandam (Google Scholar)

Zahra-Soheila Soheili (Google Scholar)

Keywords

  1. Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv. 2024;21:1735-54. doi: 10.1080/17425247.2024.2412823. PubMed PMID: 39361257.
  2. Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It’s Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest. 2024;42:559-604. doi: 10.1080/07357907.2024.2361295. PubMed PMID: 38874308.
  3. Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26:313-47. doi: 10.1007/s10456-023-09876-7. PubMed PMID: 37060495; PubMed Central PMCID: PMCPMC10105163.
  4. Zakeri F, Latifi-Navid H, Soheili ZS, Sadeghi M, Arab SS, Samiei S, et al. Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Ther. 2023;30:347-61. doi: 10.1038/s41434-022-00362-1. PubMed PMID: 36114375.
  5. Khoshandam M, Soheili ZS, Hosseinkhani S, Samiee S, Latifi-Navid H, Ahmadieh H, et al. In vivo inhibition of angiogenesis by htsFLT01/MiRGD nano complex. Transl Oncol. 2025;56:102400. doi: 10.1016/j.tranon.2025.102400. PubMed PMID: 40306151.
  6. Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17-31. doi: 10.1016/j.semcancer.2022.10.006. PubMed PMID: 36354098.
  7. Mazingi D, Lakhoo K. Cancer Development and Progression and the “Hallmarks of Cancer”. Pediatric Surgical Oncology: Springer; 2023. p. 1-15. doi: 10.1007/978-3-030-71113-9_23-1.
  8. He R, Liu Y, Fu W, He X, Liu S, Xiao D, et al. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer. 2024;23:267. doi: 10.1186/s12943-024-02172-y. PubMed PMID: 39614268; PubMed Central PMCID: PMCPMC11606237.
  9. Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther. 2024;9:175. doi: 10.1038/s41392-024-01856-7. PubMed PMID: 39013849; PubMed Central PMCID: PMCPMC11252281.
  10. Alipour M, Sheikhnejad R, Fouani MH, Bardania H, Hosseinkhani S. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells. Biomed Pharmacother. 2023;166:115299. doi: 10.1016/j.biopha.2023.115299. PubMed PMID: 37573657.
  11. Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel). 2020;12. doi: 10.3390/polym12091906. PubMed PMID: 32847045; PubMed Central PMCID: PMCPMC7563641.
  12. Wei S, Han C, Mo S, Huang H, Luo X. Advancements in programmed cell death research in antitumor therapy: a comprehensive overview. Apoptosis. 2025;30:401-21. doi: 10.1007/s10495-024-02038-0. PubMed PMID: 39487314.
  13. Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, et al. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol. 2024;15:1302587. doi: 10.3389/fimmu.2024.1302587. PubMed PMID: 38533507; PubMed Central PMCID: PMCPMC10963559.
  14. Gao X, Ma C, Liang S, Chen M, He Y, Lei W. PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). Int J Mol Med. 2024;54. doi: 10.3892/ijmm.2024.5398. PubMed PMID: 38963054; PubMed Central PMCID: PMCPMC11254103.
  15. Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells. 2024;13. doi: 10.3390/cells13221838. PubMed PMID: 39594587; PubMed Central PMCID: PMCPMC11592877.
  16. Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett. 2024;29:130. doi: 10.1186/s11658-024-00646-x. PubMed PMID: 39379817; PubMed Central PMCID: PMCPMC11463096.
  17. Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, et al. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ. 2024;31:387-404. doi: 10.1038/s41418-024-01284-8. PubMed PMID: 38521844; PubMed Central PMCID: PMCPMC11043370.
  18. Huang K, Zhang J, O’Neill KL, Gurumurthy CB, Quadros RM, Tu Y, et al. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis. J Biol Chem. 2016;291:11843-51. doi: 10.1074/jbc.M115.711051. PubMed PMID: 27053107; PubMed Central PMCID: PMCPMC4882451.
  19. Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022;29:961-71. doi: 10.1038/s41418-022-00996-z. PubMed PMID: 35396345; PubMed Central PMCID: PMCPMC9090748.
  20. Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol. 2024;59:128-38. doi: 10.1080/10409238.2024.2344465. PubMed PMID: 38661126; PubMed Central PMCID: PMCPMC11209770.
  21. Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, et al. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol. 2024;14:1227151. doi: 10.3389/fonc.2024.1227151. PubMed PMID: 38756663; PubMed Central PMCID: PMCPMC11097164.
  22. Alipour M, Majidi A, Molaabasi F, Sheikhnejad R, Hosseinkhani S. In vivo tumor gene delivery using novel peptideticles: pH-responsive and ligand targeted core-shell nanoassembly. Int J Cancer. 2018;143:2017-28. doi: 10.1002/ijc.31577. PubMed PMID: 29708599.
  23. Moasses Ghafary S, Rahimjazi E, Hamzehil H, Modarres Mousavi SM, Nikkhah M, Hosseinkhani S. Design and preparation of a theranostic peptideticle for targeted cancer therapy: Peptide-based codelivery of doxorubicin/curcumin and graphene quantum dots. Nanomedicine. 2022;42:102544. doi: 10.1016/j.nano.2022.102544. PubMed PMID: 35192939.
  24. Alipour M, Hosseinkhani S. Design, Preparation, and Characterization of Peptide-Based Nanocarrier for Gene Delivery. Methods Mol Biol. 2019;2000:59-69. doi: 10.1007/978-1-4939-9516-5_5. PubMed PMID: 31148008.
  25. Taghizadeh S, Soheili ZS, Sadeghi M, Samiei S, Ranaei Pirmardan E, Kashanian A, et al. sFLT01 modulates invasion and metastasis in prostate cancer DU145 cells by inhibition of VEGF/GRP78/MMP2&9 axis. BMC Mol Cell Biol. 2021;22:30. doi: 10.1186/s12860-021-00367-5. PubMed PMID: 34011277; PubMed Central PMCID: PMCPMC8135984.
  26. Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med. 2022;28:132. doi: 10.1186/s10020-022-00560-y. PubMed PMID: 36348274; PubMed Central PMCID: PMCPMC9644706.
  27. Wang HB, Li T, Ma DZ, Ji YX, Zhi H. RETRACTED: Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells. Biomed Pharmacother. 2017;93:1-7. doi: 10.1016/j.biopha.2017.05.105. PubMed PMID: 28618251.
  28. Marin-Rubio JL, Vela-Martin L, Fernandez-Piqueras J, Villa-Morales M. FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel). 2019;11. doi: 10.3390/cancers11101462. PubMed PMID: 31569512; PubMed Central PMCID: PMCPMC6826683.
  29. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277:76-89. doi: 10.1111/imr.12541. PubMed PMID: 28462525; PubMed Central PMCID: PMCPMC5417704.
  30. Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol. 2023;70:101832. doi: 10.1016/j.smim.2023.101832. PubMed PMID: 37625331.
  31. Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 2021;26:512-33. doi: 10.1007/s10495-021-01687-9. PubMed PMID: 34510317.