Document Type : Review Article
Authors
1 Shandong Second Medical University, Shandong, China
2 Pediatric Ward, Linyi People’s Hospital Affiliated to Shandong Second Medical University, Shandong, China
3 Neurosurgical Intensive Care Unit, Linyi People’s Hospital Affiliated to Shandong Second Medical University, Shandong, China
4 Hospital Office Department, Linyi People’s Hospital Affiliated to Shandong Second Medical University, Shandong, China
Abstract
Cavernous malformations, also known as cavernous hemangiomas or cavernomas, are abnormal vascular lesions that can occur in various parts of the body, including intracranially. Surgical resection is often the preferred treatment for symptomatic or high-risk lesions located in eloquent or critical brain or spinal cord regions. However, cerebral cavernous malformation surgery presents unique challenges due to the risk of neurological deficits and the proximity of these lesions to vital neural structures. Intraoperative neurophysiological monitoring (IONM) plays a crucial role in enhancing surgical safety, minimizing complications, and optimizing patient outcomes. This review aimed to provide an overview of the various IONM techniques employed during cerebral cavernous malformations resection, particularly the relationship between intraoperative stimulation intensity and distance to fiber tracts or specific brain nuclei as monitored by IONM.
Highlights
Mei Shao (Google Scholar)
Feng-Ling Wang (Google Scholar)
Keywords
- Yang Y, Velz J, Neidert MC, Stienen MN, Regli L, Bozinov O. Natural History of Brainstem Cavernous Malformations: On the Variation in Hemorrhage Rates. World Neurosurg. 2022;157:e342-e50. doi: 10.1016/j.wneu.2021.10.092. PubMed PMID: 34656794.
- Shim Y, Phi JH, Wang KC, Cho BK, Lee JY, Koh EJ, et al. Clinical outcomes of pediatric cerebral cavernous malformation: an analysis of 124 consecutive cases. J Neurosurg Pediatr. 2022;30:474-83. doi: 10.3171/2022.7.PEDS22299. PubMed PMID: 36057124.
- Gross BA, Du R. Hemorrhage from cerebral cavernous malformations: a systematic pooled analysis. J Neurosurg. 2017;126:1079-87. doi: 10.3171/2016.3.JNS152419. PubMed PMID: 27203143.
- Guzzi G, Ricciuti RA, Della Torre A, Lo Turco E, Lavano A, Longhini F, et al. Intraoperative Neurophysiological Monitoring in Neurosurgery. J Clin Med. 2024;13. doi: 10.3390/jcm13102966. PubMed PMID: 38792507; PubMed Central PMCID: PMCPMC11122101.
- Gui S, Meng G, Xiao X, Wu Z, Zhang J. Surgical Management of Brainstem Cavernous Malformation: Report of 67 Patients. World Neurosurg. 2019;122:e1162-e71. doi: 10.1016/j.wneu.2018.11.008. PubMed PMID: 30447450.
- Lo YL, Zhu L, Soh RC, Guo CM. Intraoperative Motor Evoked Potential Improvement in Cervical Spondylotic Myelopathy: Comparison of Cortical Stimulation Parameters. J Clin Neurol. 2020;16:102-7. doi: 10.3988/jcn.2020.16.1.102. PubMed PMID: 31942765; PubMed Central PMCID: PMCPMC6974831.
- Boex C, Goga C, Berard N, Haemmerli J, Zegarek G, Bartoli A, et al. Introduction of a novel connection clip for the ultrasonic aspirator for subcortical continuous motor mapping. Brain Spine. 2021;1:100002. doi: 10.1016/j.bas.2021.100002. PubMed PMID: 36247400; PubMed Central PMCID: PMCPMC9559965.
- Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg. 2015;123:711-20. doi: 10.3171/2014.10.JNS141289. PubMed PMID: 26047412.
- Zhu F, Chui J, Herrick I, Martin J. Intraoperative evoked potential monitoring for detecting cerebral injury during adult aneurysm clipping surgery: a systematic review and meta-analysis of diagnostic test accuracy. BMJ Open. 2019;9:e022810. doi: 10.1136/bmjopen-2018-022810. PubMed PMID: 30760514; PubMed Central PMCID: PMCPMC6377512.
- Clark AJ, Safaee M, Chou D, Weinstein PR, Molinaro AM, Clark JP, 3rd, et al. Comparative Sensitivity of Intraoperative Motor Evoked Potential Monitoring in Predicting Postoperative Neurologic Deficits: Nondegenerative versus Degenerative Myelopathy. Global Spine J. 2016;6:452-8. doi: 10.1055/s-0035-1565258. PubMed PMID: 27433429; PubMed Central PMCID: PMCPMC4947397.
- MacDonald DB. Overview on Criteria for MEP Monitoring. J Clin Neurophysiol. 2017;34:4-11. doi: 10.1097/WNP.0000000000000302. PubMed PMID: 28045852.
- Doyal A, Schoenherr JW, Flynn DN. Motor Evoked Potential. [Updated 2023 Apr 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan 3. Available from: https://www.ncbi.nlm.nih.gov/books/NBK580548/
- Ugawa R, Takigawa T, Shimomiya H, Ohnishi T, Kurokawa Y, Oda Y, et al. An evaluation of anesthetic fade in motor evoked potential monitoring in spinal deformity surgeries. J Orthop Surg Res. 2018;13:227. doi: 10.1186/s13018-018-0934-7. PubMed PMID: 30185199; PubMed Central PMCID: PMCPMC6126029.
- Toleikis JR, Pace C, Jahangiri FR, Hemmer LB, Toleikis SC. Intraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2024;38:1003-42. doi: 10.1007/s10877-024-01201-x. PubMed PMID: 39068294; PubMed Central PMCID: PMCPMC11427520.
- Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6. doi: 10.3171/2009.8.FOCUS09150. PubMed PMID: 19795955.
- Charalampidis A, Jiang F, Wilson JRF, Badhiwala JH, Brodke DS, Fehlings MG. The Use of Intraoperative Neurophysiological Monitoring in Spine Surgery. Global Spine J. 2020;10:104S-14S. doi: 10.1177/2192568219859314. PubMed PMID: 31934514; PubMed Central PMCID: PMCPMC6947672.
- MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, et al. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol. 2019;130:161-79. doi: 10.1016/j.clinph.2018.10.008. PubMed PMID: 30470625.
- Ryalino C, Sahinovic MM, Drost G, Absalom AR. Intraoperative monitoring of the central and peripheral nervous systems: a narrative review. Br J Anaesth. 2024;132:285-99. doi: 10.1016/j.bja.2023.11.032. PubMed PMID: 38114354.
- Rummel C, Abela E, Andrzejak RG, Hauf M, Pollo C, Muller M, et al. Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG Measures: Towards Prediction of Post-Surgical Seizure Control. PLoS One. 2015;10:e0141023. doi: 10.1371/journal.pone.0141023. PubMed PMID: 26513359; PubMed Central PMCID: PMCPMC4626164.
- Ozlen F, Isler C, Akgun MY, Ozkara C, Karabacak M, Delil S, et al. Factors Affecting Seizure Outcomes After Surgery for Cavernoma Related Epilepsy. Turk Neurosurg. 2022;32:386-91. doi: 10.5137/1019-5149.JTN.33806-21.2. PubMed PMID: 34664700.
- Singh H, Vogel RW, Lober RM, Doan AT, Matsumoto CI, Kenning TJ, et al. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide. Scientifica (Cairo). 2016;2016:1751245. doi: 10.1155/2016/1751245. PubMed PMID: 27293965; PubMed Central PMCID: PMCPMC4886091.
- Cordella R, Orena E, Acerbi F, Beretta E, Caldiroli D, Dimeco F, et al. Motor Evoked Potentials and Bispectral Index-Guided Anaesthesia in Image-Guided Mini-Invasive Neurosurgery of Supratentorial Tumors Nearby the Cortico-Spinal Tract. Turk Neurosurg. 2018;28:341-8. doi: 10.5137/1019-5149.JTN.20023-17.1. PubMed PMID: 28758184.
- Møller AR. Chapter 5 - Neurophysiology of the auditory system: basics and ION techniques. In: Deletis V, Shils JL, Sala F, Seidel K, editors. Neurophysiology in Neurosurgery (Second Edition). Cambridge: Academic Press; 2020. p. 65-85. doi: 10.1016/B978-0-12-815000-9.00005-8.
- Singh R, Vates E. Brainstem Auditory Evoked Response Test. [Updated 2023 Nov 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan 14. Available from: https://www.ncbi.nlm.nih.gov/books/NBK597358/
- Markand ON. Clinical evoked potentials: an illustrated manual. New York: Springer Nature; 2020.
- Dineen J, Simon MV, Ala N. Anesthesia and Intraoperative Neurophysiology. In: Simon MV, editor. New York: Springer Publishing Company; 2018. p. 59-80. doi: 10.1891/9781617052941.0002.
- Basoz Behmen M, Guler N, Kuru E, Bal N, Gedik Toker O. Speech auditory brainstem response in audiological practice: a systematic review. Eur Arch Otorhinolaryngol. 2023;280:2099-118. doi: 10.1007/s00405-023-07830-3. PubMed PMID: 36651959.
- Shah HA, Begley SL, Unadkat P, Kelly Hugo K, Schulder M. Direct-cortical visual evoked potential monitoring during brain tumor resection. J Clin Neurosci. 2023;115:1-7. doi: 10.1016/j.jocn.2023.06.014. PubMed PMID: 37454439.
- Jashek-Ahmed F, Cabrilo I, Bal J, Sanders B, Grieve J, Dorward NL, et al. Intraoperative monitoring of visual evoked potentials in patients undergoing transsphenoidal surgery for pituitary adenoma: a systematic review. BMC Neurol. 2021;21:287. doi: 10.1186/s12883-021-02315-4. PubMed PMID: 34301198; PubMed Central PMCID: PMCPMC8299587.
- Mattogno PP, D’Alessandris QG, Rigante M, Granata G, Di Domenico M, Perotti V, et al. Reliability of intraoperative visual evoked potentials (iVEPs) in monitoring visual function during endoscopic transsphenoidal surgery. Acta Neurochir (Wien). 2023;165:3421-9. doi: 10.1007/s00701-023-05778-1. PubMed PMID: 37733080; PubMed Central PMCID: PMCPMC10624729.
- Mazzeo AT, Gupta DK. Intraoperative visual evoked potential monitoring for a safer endoscopic transsphenoidal surgery. Neurol India. 2018;66:955-7. doi: 10.4103/0028-3886.236996. PubMed PMID: 30038077.
- Soumpasis C, Diaz-Baamonde A, Ghimire P, Baig Mirza A, Borri M, Jarosz J, et al. Intraoperative Neuromonitoring of the Visual Pathway in Asleep Neuro-Oncology Surgery. Cancers (Basel). 2023;15. doi: 10.3390/cancers15153943. PubMed PMID: 37568762; PubMed Central PMCID: PMCPMC10416823.
- Ghatol D, Widrich J. Intraoperative Neurophysiological Monitoring. Treasure Island (FL) ineligible companies. Disclosure: Jason Widrich declares no relevant financial relationships with ineligible companies.: StatPearls Publishing, StatPearls Publishing LLC; 2025. PubMed PMID: 33085350.
- Prell J, Skinner S. EMG monitoring. Handb Clin Neurol. 2022;186:67-81. doi: 10.1016/B978-0-12-819826-1.00002-8. PubMed PMID: 35772900.
- Verst SM, Barros MR, Maldaun MVC. Intraoperative Monitoring: neurophysiology and surgical approaches. New York: Springer Nature; 2022. doi: 10.1007/978-3-030-95730-8.
- Seubert CN, Balzer JR. Koht, Sloan, Toleikis’s Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. New York: Springer Nature; 2022. doi: 10.1007/978-3-031-09719-5.
- Beverwyk AJ, Mancuso K, Prabhakar A, Lissauer J, Kaye AD, Davis SF. Electromyography (EMG). In: Davis SF, Kaye AD, editors. Principles of Neurophysiological Assessment, Mapping, and Monitoring. Cham: Springer International Publishing; 2020. p. 135-45. doi: 10.1007/978-3-030-22400-4_8.
- Thilen SR, Sherpa JR, James AM, Cain KC, Treggiari MM, Bhananker SM. Management of Muscle Relaxation With Rocuronium and Reversal With Neostigmine or Sugammadex Guided by Quantitative Neuromuscular Monitoring. Anesth Analg. 2024;139:536-44. doi: 10.1213/ANE.0000000000006511. PubMed PMID: 37171989.
- Parl Y, Yang H-r, Jo S-H, Yi H-J, Bak KH, Kang C-N, et al. Intraoperative neurophysiological monitoring for inhalational anesthesia based on the minimum alveolar concentration level. Journal of Intraoperative Neurophysiology. 2019;1:39-43. doi: 10.33523/join.2019.1.2.39.
- Hudec J, Kosinova M, Prokopova T, Zelinkova H, Hudacek K, Repko M, et al. The influence of depth of sedation on motor evoked potentials monitoring in youth from 4 to 23 years old: preliminary data from a prospective observational study. Front Med (Lausanne). 2024;11:1471450. doi: 10.3389/fmed.2024.1471450. PubMed PMID: 39534220; PubMed Central PMCID: PMCPMC11554488.
- Gu Y, Hao J, Wang J, Liang P, Peng X, Qin X, et al. Effectiveness Assessment of Bispectral Index Monitoring Compared with Conventional Monitoring in General Anesthesia: A Systematic Review and Meta-Analysis. Anesthesiol Res Pract. 2024;2024:5555481. doi: 10.1155/2024/5555481. PubMed PMID: 39149130; PubMed Central PMCID: PMCPMC11325011.
- Perez-Otal B, Aragon-Benedi C, Pascual-Bellosta A, Ortega-Lucea S, Martinez-Ubieto J, Ramirez-Rodriguez JM, et al. Neuromonitoring depth of anesthesia and its association with postoperative delirium. Sci Rep. 2022;12:12703. doi: 10.1038/s41598-022-16466-y. PubMed PMID: 35882875; PubMed Central PMCID: PMCPMC9325758.
- Ripollés-Melchor J, Ruiz-Escobar A, Fernández-Valdes-Bango P, Lorente JV, Jiménez-López I, Abad-Gurumeta A, et al. Hypotension prediction index: From reactive to predictive hemodynamic management, the key to maintaining hemodynamic stability. Frontiers in Anesthesiology. 2023;2:1138175. doi: 10.3389/fanes.2023.1138175.
- Kho E, Sperna Weiland NH, Vlaar APJ, Veelo DP, van der Ster BJP, Corsmit OT, et al. Cerebral hemodynamics during sustained intraoperative hypotension. J Appl Physiol (1985). 2022;132:1560-8. doi: 10.1152/japplphysiol.00050.2022. PubMed PMID: 35511723.
- Lazaridis C, Foreman B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics. 2023;20:1457-71. doi: 10.1007/s13311-023-01411-2. PubMed PMID: 37491682; PubMed Central PMCID: PMCPMC10684466.
- Nguyen A, Mandavalli A, Diaz MJ, Root KT, Patel A, Casauay J, et al. Neurosurgical Anesthesia: Optimizing Outcomes with Agent Selection. Biomedicines. 2023;11. doi: 10.3390/biomedicines11020372. PubMed PMID: 36830909; PubMed Central PMCID: PMCPMC9953550.
- Phadikar S, Sinha N, Ghosh R, Ghaderpour E. Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter. Sensors (Basel). 2022;22. doi: 10.3390/s22082948. PubMed PMID: 35458940; PubMed Central PMCID: PMCPMC9030243.
- You H, Qiao H. Intraoperative Neuromonitoring During Resection of Gliomas Involving Eloquent Areas. Front Neurol. 2021;12:658680. doi: 10.3389/fneur.2021.658680. PubMed PMID: 34248818; PubMed Central PMCID: PMCPMC8260928.
- Byun J, Ahn JS, Park W, Hong SH, Kim Y-H, Kim CJ, et al. Microsurgical treatment outcomes of brainstem cavernous malformation: subgroup comparison depending on application of intraoperative neurophysiologic monitoring. Interdisciplinary Neurosurgery. 2018;13:74-81. doi: 10.1016/j.inat.2018.04.011.
- Rossetti AO, Schindler K, Sutter R, Ruegg S, Zubler F, Novy J, et al. Continuous vs Routine Electroencephalogram in Critically Ill Adults With Altered Consciousness and No Recent Seizure: A Multicenter Randomized Clinical Trial. JAMA Neurol. 2020;77:1225-32. doi: 10.1001/jamaneurol.2020.2264. PubMed PMID: 32716479; PubMed Central PMCID: PMCPMC7385681
- Nico E, Adereti CO, Hackett AM, Bianconi A, Naik A, Eberle AT, et al. Assessing the Relationship between Surgical Timing and Postoperative Seizure Outcomes in Cavernoma-Related Epilepsy: A Single-Institution Retrospective Analysis of 63 Patients with a Review of the Literature. Brain Sci. 2024;14. doi: 10.3390/brainsci14050494. PubMed PMID: 38790473; PubMed Central PMCID: PMCPMC11120247.
- Sala F. Intraoperative neurophysiology in pediatric neurosurgery: a historical perspective. Childs Nerv Syst. 2023;39:2929-41. doi: 10.1007/s00381-023-06155-0. PubMed PMID: 37776333; PubMed Central PMCID: PMCPMC10613152.
- Li Y, Guo J, Zhang K, Wei H, Fan J, Yu S, et al. Diffusion tensor imaging versus intraoperative subcortical mapping for glioma resection: a systematic review and meta-analysis. Neurosurg Rev. 2023;46:154. doi: 10.1007/s10143-023-02058-5. PubMed PMID: 37380888; PubMed Central PMCID: PMCPMC10307847.
- Sulangi AJ, Husain A, Lei H, Okun J. Neuronavigation in glioma resection: current applications, challenges, and clinical outcomes. Front Surg. 2024;11:1430567. doi: 10.3389/fsurg.2024.1430567. PubMed PMID: 39165667; PubMed Central PMCID: PMCPMC11334078.
- Yang Y, Neidert MC, Velz J, Kalin V, Sarnthein J, Regli L, et al. Mapping and Monitoring of the Corticospinal Tract by Direct Brainstem Stimulation. Neurosurgery. 2022;91:496-504. doi: 10.1227/neu.0000000000002065. PubMed PMID: 35876678.
- Wu HL, Hsu PC, Hsu SPC, Lin CF, Liao KK, Yang KM, et al. Correlation between intraoperative mapping and monitoring and functional outcomes following supratentorial glioma surgery. Tzu Chi Med J. 2021;33:395-8. doi: 10.4103/tcmj.tcmj_270_20. PubMed PMID: 34760637; PubMed Central PMCID: PMCPMC8532584.
- Niedermeyer S, Szelenyi A, Schichor C, Tonn JC, Siller S. Intramedullary spinal cord cavernous malformations-association between intraoperative neurophysiological monitoring changes and neurological outcome. Acta Neurochir (Wien). 2022;164:2595-604. doi: 10.1007/s00701-022-05354-z. PubMed PMID: 36066749; PubMed Central PMCID: PMCPMC9519689.
- Rauschenbach L, Santos AN, Dinger TF, Herten A, Darkwah Oppong M, Schmidt B, et al. Predictive Value of Intraoperative Neuromonitoring in Brainstem Cavernous Malformation Surgery. World Neurosurg. 2021;156:e359-e73. doi: 10.1016/j.wneu.2021.09.064. PubMed PMID: 34560298.
- Alvarez CM, Farhan R, Jahangiri FR. Benefits of Intraoperative Neurophysiological Monitoring (IONM) for the Localization, Mapping, and Resection of Tumors in the Fourth Ventricle: A Literature Review. J of Neurophysiological Monitoring. 2023;1:22-36.
- Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, et al. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel). 2023;15. doi: 10.3390/cancers15194890. PubMed PMID: 37835584; PubMed Central PMCID: PMCPMC10571802.
- Ashraf M, Choudhary N, Hussain SS, Kamboh UA, Ashraf N. Role of intraoperative computed tomography scanner in modern neurosurgery - An early experience. Surg Neurol Int. 2020;11:247. doi: 10.25259/SNI_303_2020. PubMed PMID: 32905376; PubMed Central PMCID: PMCPMC7468186.
- Certo F, Altieri R, Grasso G, Barbagallo GMV. Role of i-CT, i-US, and Neuromonitoring in Surgical Management of Brain Cavernous Malformations and Arteriovenous Malformations: A Case Series. World Neurosurg. 2022;159:402-8. doi: 10.1016/j.wneu.2021.12.078. PubMed PMID: 35255639.
- Bandla A, Ghode P, Thakor NV. Multimodal and Multiparametric Neuroimaging of Gliomas. In: Thakor NV, editor. Handbook of Neuroengineering. Singapore: Springer Nature Singapore; 2023. p. 3027-54. doi: 10.1007/978-981-16-5540-1_93.
- Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci. 2022;21:148-67. doi: 10.2463/mrms.rev.2021-0116. PubMed PMID: 34880193; PubMed Central PMCID: PMCPMC9199972.