Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

3 Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Kufa 54003, Iraq

4 Department of Natural Sciences, West-Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

5 Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

6 Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

10.30476/ijms.2025.105914.3995

Abstract

Background: The progression of life and cellular senescence can alter the physiological activity of every cell type. Here, the possible effect of oxidative stress on exosome (Exo) biogenesis was studied in endometrial adenocarcinoma Ishikawa cells. 
Methods: This in vitro study was conducted from 2022 to 2023 at the Stem Cell Research Center affiliated with Tabriz University of Medical Sciences. Cells were treated with 20 μM hydrogen peroxide (H2O2) for 4 days, and physicochemical properties of Exos were analyzed using dynamic light scattering (DLS), scanning electron microscope (SEM), and western blotting. The expression of genes such as ALIX, CD63, TSG101, Rab27a, and Rab27b, along with aging factor senescence-associated 𝛽-galactosidase (SA-β-gal), was studied using real-time PCR analysis. The fatty acid profile was determined in isolated Exos using gas chromatography. We also measured the exosomal content of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA).  
Results: The expression of SA-β-gal confirmed the successful induction of aging in Ishikawa cells after 4 days (P=0.0286). DLS analysis indicated a slight increase and decrease in mean Exo size and zeta potential, respectively, in H2O2-treated Exos compared to the control group. Proteomic analysis revealed the lack of changes in exosomal levels of CD63 and CD81 tetraspanins in both groups (P=0.001). Real-time PCR analysis indicated the upregulation of ALIX and TSG101, while the expression of CD63 and Rab27b was reduced in H2O2-treated cells compared to the control group (P=0.0015 and P=0.0129). No statistically significant changes were found in exosomal levels of SOD, GPx, and MDA before and after treatment with the H2O2 (P=0.857, P=0.421, and P=0.3739). Data indicated an increase in exosomal polyunsaturated fatty acids and monounsaturated fatty acids in H2O2-treated cells compared to the control cells.
Conclusion: Oxidative stress can influence Exo biogenesis and paracrine activity in endometrial tumor cells via the induction of cellular senescence.

Highlights

Fatemeh Sokouti Nasimi (Google Scholar)

Reza Rahbarghazi (Google Scholar)

Keywords

  1. Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal. 2005;17:1183-93. doi: 10.1016/j.cellsig.2005.03.026. PubMed PMID: 15982853.
  2. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116-25. doi: 10.1016/j.ceb.2014.05.004. PubMed PMID: 24959705.
  3. Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal. 2020;75:109771. doi: 10.1016/j.cellsig.2020.109771. PubMed PMID: 32896608.
  4. Dezhakam E, Khalilzadeh B, Mahdipour M, Isildak I, Yousefi H, Ahmadi M, et al. Electrochemical biosensors in exosome analysis; a short journey to the present and future trends in early-stage evaluation of cancers. Biosens Bioelectron. 2023;222:114980. doi: 10.1016/j.bios.2022.114980. PubMed PMID: 36521207.
  5. Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses. 2015;7:5066-83. doi: 10.3390/v7092862. PubMed PMID: 26393640; PubMed Central PMCID: PMCPMC4584306.
  6. Camussi G, Quesenberry PJ. Perspectives on the Potential Therapeutic Uses of Vesicles. Exosomes Microvesicles. 2013;1. doi: 10.5772/57393. PubMed PMID: 26005501; PubMed Central PMCID: PMCPMC4440315.
  7. Nazdikbin Yamchi N, Ahmadian S, Mobarak H, Amjadi F, Beheshti R, Tamadon A, et al. Amniotic fluid-derived exosomes attenuated fibrotic changes in POI rats through modulation of the TGF-beta/Smads signaling pathway. J Ovarian Res. 2023;16:118. doi: 10.1186/s13048-023-01214-1. PubMed PMID: 37370156; PubMed Central PMCID: PMCPMC10294370.
  8. Rezaie J, Nejati V, Khaksar M, Oryan A, Aghamohamadzadeh N, Shariatzadeh MA, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018;374:555-65. doi: 10.1007/s00441-018-2895-x. PubMed PMID: 30073543.
  9. Pournaghi M, Khodavirdilou R, Saadatlou MAE, Nasimi FS, Yousefi S, Mobarak H, et al. Effect of melatonin on exosomal dynamics in bovine cumulus cells. Process Biochemistry. 2021;106:78-87. doi: 10.1016/j.procbio.2021.03.008.
  10. Saheera S, Potnuri AG, Krishnamurthy P. Nano-Vesicle (Mis)Communication in Senescence-Related Pathologies. Cells. 2020;9. doi: 10.3390/cells9091974. PubMed PMID: 32859053; PubMed Central PMCID: PMCPMC7564330.
  11. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One. 2009;4:e4160. doi: 10.1371/journal.pone.0004160. PubMed PMID: 19129916; PubMed Central PMCID: PMCPMC2612751.
  12. Qureshi AW, Altamimy R, El Habhab A, El Itawi H, Farooq MA, Zobairi F, et al. Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1. Biochem Pharmacol. 2020;173:113734. doi: 10.1016/j.bcp.2019.113734. PubMed PMID: 31811867.
  13. Mensa E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, et al. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles. 2020;9:1725285. doi: 10.1080/20013078.2020.1725285. PubMed PMID: 32158519; PubMed Central PMCID: PMCPMC7048230.
  14. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68:7864-71. doi: 10.1158/0008-5472.CAN-07-6538. PubMed PMID: 18829542; PubMed Central PMCID: PMCPMC3845029.
  15. Rezabakhsh A, Nabat E, Yousefi M, Montazersaheb S, Cheraghi O, Mehdizadeh A, et al. Endothelial cells’ biophysical, biochemical, and chromosomal aberrancies in high-glucose condition within the diabetic range. Cell Biochem Funct. 2017;35:83-97. doi: 10.1002/cbf.3251. PubMed PMID: 28211084.
  16. Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr Gerontol Int. 2020;20:539-46. doi: 10.1111/ggi.13928. PubMed PMID: 32358923.
  17. Xu M, Su X, Xiao X, Yu H, Li X, Keating A, et al. Hydrogen Peroxide-Induced Senescence Reduces the Wound Healing-Promoting Effects of Mesenchymal Stem Cell-Derived Exosomes Partially via miR-146a. Aging Dis. 2021;12:102-15. doi: 10.14336/AD.2020.0624. PubMed PMID: 33532131; PubMed Central PMCID: PMCPMC7801275.
  18. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113:3613-22. doi: 10.1242/jcs.113.20.3613. PubMed PMID: 11017877.
  19. Chen W, Zhu J, Lin F, Xu Y, Feng B, Feng X, et al. Human placenta mesenchymal stem cell-derived exosomes delay H(2)O(2)-induced aging in mouse cholangioids. Stem Cell Res Ther. 2021;12:201. doi: 10.1186/s13287-021-02271-3. PubMed PMID: 33752720; PubMed Central PMCID: PMCPMC7983269.
  20. Warraich UE, Hussain F, Kayani HUR. Aging - Oxidative stress, antioxidants and computational modeling. Heliyon. 2020;6:e04107. doi: 10.1016/j.heliyon.2020.e04107. PubMed PMID: 32509998; PubMed Central PMCID: PMCPMC7264715.
  21. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel). 2023;12. doi: 10.3390/antiox12030651. PubMed PMID: 36978899; PubMed Central PMCID: PMCPMC10044767.
  22. Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines. 2021;9. doi: 10.3390/biomedicines9080968. PubMed PMID: 34440172; PubMed Central PMCID: PMCPMC8393989.
  23. Shimoda A, Sawada SI, Sasaki Y, Akiyoshi K. Exosome surface glycans reflect osteogenic differentiation of mesenchymal stem cells: Profiling by an evanescent field fluorescence-assisted lectin array system. Sci Rep. 2019;9:11497. doi: 10.1038/s41598-019-47760-x. PubMed PMID: 31395910; PubMed Central PMCID: PMCPMC6687741.
  24. Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci. 2021;22. doi: 10.3390/ijms22115788. PubMed PMID: 34071388; PubMed Central PMCID: PMCPMC8198018.
  25. Davis C, Dukes A, Drewry M, Helwa I, Johnson MH, Isales CM, et al. MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Eng Part A. 2017;23:1231-40. doi: 10.1089/ten.TEA.2016.0525. PubMed PMID: 28363268; PubMed Central PMCID: PMCPMC5689127.
  26. Bagheri HS, Mousavi M, Rezabakhsh A, Rezaie J, Rasta SH, Nourazarian A, et al. Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci. 2018;33:1131-45. doi: 10.1007/s10103-018-2495-8. PubMed PMID: 29603107.
  27. Yoon EJ, Choi Y, Kim TM, Choi EK, Kim YB, Park D. The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. Int J Mol Sci. 2022;23. doi: 10.3390/ijms23179532. PubMed PMID: 36076942; PubMed Central PMCID: PMCPMC9455780.
  28. Deng S, Essandoh K, Wang X, Li Y, Huang W, Chen J, et al. Tsg101 positively regulates P62-Keap1-Nrf2 pathway to protect hearts against oxidative damage. Redox Biol. 2020;32:101453. doi: 10.1016/j.redox.2020.101453. PubMed PMID: 32057709; PubMed Central PMCID: PMCPMC7264471.
  29. Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Palladium Nanoparticle-Induced Oxidative Stress, Endoplasmic Reticulum Stress, Apoptosis, and Immunomodulation Enhance the Biogenesis and Release of Exosome in Human Leukemia Monocytic Cells (THP-1). Int J Nanomedicine. 2021;16:2849-77. doi: 10.2147/IJN.S305269. PubMed PMID: 33883895; PubMed Central PMCID: PMCPMC8055296.
  30. Chatellard-Causse C, Blot B, Cristina N, Torch S, Missotten M, Sadoul R. Alix (ALG-2-interacting protein X), a protein involved in apoptosis, binds to endophilins and induces cytoplasmic vacuolization. J Biol Chem. 2002;277:29108-15. doi: 10.1074/jbc.M204019200. PubMed PMID: 12034747.
  31. Zhang Y, Song M, Cui ZS, Li CY, Xue XX, Yu M, et al. Down-regulation of TSG101 by small interfering RNA inhibits the proliferation of breast cancer cells through the MAPK/ERK signal pathway. Histol Histopathol. 2011;26:87-94. doi: 10.14670/HH-26.87. PubMed PMID: 21117030.
  32. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 2012;24:835-45. doi: 10.1016/j.cellsig.2011.12.006. PubMed PMID: 22182507.
  33. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287. doi: 10.1038/ncomms15287. PubMed PMID: 28508895; PubMed Central PMCID: PMCPMC5440838.
  34. Estebanez B, Visavadiya NP, de Paz JA, Whitehurst M, Cuevas MJ, Gonzalez-Gallego J, et al. Resistance Training Diminishes the Expression of Exosome CD63 Protein without Modification of Plasma miR-146a-5p and cfDNA in the Elderly. Nutrients. 2021;13. doi: 10.3390/nu13020665. PubMed PMID: 33669497; PubMed Central PMCID: PMCPMC7922765.
  35. Buratta S, Urbanelli L, Sagini K, Giovagnoli S, Caponi S, Fioretto D, et al. Extracellular vesicles released by fibroblasts undergoing H-Ras induced senescence show changes in lipid profile. PLoS One. 2017;12:e0188840. doi: 10.1371/journal.pone.0188840. PubMed PMID: 29182668; PubMed Central PMCID: PMCPMC5705128.
  36. Sagini K, Urbanelli L, Costanzi E, Mitro N, Caruso D, Emiliani C, et al. Oncogenic H-Ras Expression Induces Fatty Acid Profile Changes in Human Fibroblasts and Extracellular Vesicles. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19113515. PubMed PMID: 30413053; PubMed Central PMCID: PMCPMC6275056.
  37. Ford JH. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordr). 2010;32:231-7. doi: 10.1007/s11357-009-9128-x. PubMed PMID: 20431990; PubMed Central PMCID: PMCPMC2861752.
  38. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345-76. doi: 10.1146/annurev.nutr.24.121803.063211. PubMed PMID: 15189125.
  39. Maeda M, Scaglia N, Igal RA. Regulation of fatty acid synthesis and Delta9-desaturation in senescence of human fibroblasts. Life Sci. 2009;84:119-24. doi: 10.1016/j.lfs.2008.11.009. PubMed PMID: 19059270.