Iranian Journal of Medical Sciences

Document Type : Original Article(s)

Authors

1 Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq

10.30476/ijms.2025.105799.3976

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen that causes various infections and exhibits antibiotic resistance and virulence factors, requiring alternative therapies. This study aimed to evaluate the effects of nanocurcumin on gene expression of S. aureus isolates from burn wounds in Iraqi patients, focusing on inhibiting resistance and virulence genes.   
Methods: From March 2023 to May 2024, burn wound samples from Iraqi patients yielded 110 S. aureus isolates. Identification was conducted by Gram staining, biochemical assays, and culture techniques. Fifty isolates were randomly selected for antibiotic susceptibility testing using the VITEK 2 Compact System. Ten isolates showing the highest resistance to multiple antibiotics were selected for molecular characterization via Multiplex polymerase chain reaction (Multiplex PCR) to detect fnbA, icaA, icaB, ftsZ, hla, pvl, femA, and mecA genes. The ten isolates were then divided into two groups: a treatment group exposed to nanocurcumin and an untreated control group. The MIC (minimum inhibitory concentration) of nanocurcumin was determined using the broth microdilution method in a 96-well plate. The 16S rRNA gene served as an internal control for evaluating the molecular effects. A two-tailed t test was used to assess the significance of gene expression differences.
Results: All 110 isolates were confirmed as S. aureus. The 50 selected isolates were resistant to cefoxitin, amoxicillin, benzylpenicillin, ampicillin/sulbactam, piperacillin/tazobactam, cloxacillin, oxacillin, and azithromycin. MecA gene was detected in all isolates. Among the ten tested, femA, icaA, hla, and ftsZ were present in 70%; pvl in 50%; icaB in 20%; and fnbA in 10%. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), showed significant downregulation of icaA, hla, pvl, femA, and mecA in treated isolates. No significant changes were seen in fnbA and ftsZ. 
Conclusion: Nanocurcumin inhibits S. aureus virulence and resistance genes, reducing biofilm formation and toxin production, but lacks effect on fnbA and ftsZ, requiring further research. 

Highlights

Alaa Alhameedawi (Google Scholar)

Majid Sadeghizadeh (Google Scholar)

Keywords

  1. Agnihotri N, Gupta V, Joshi RM. Aerobic bacterial isolates from burn wound infections and their antibiograms--a five-year study. Burns. 2004;30:241-3. doi: 10.1016/j.burns.2003.11.010. PubMed PMID: 15082351.
  2. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520-32. doi: 10.1056/NEJM199808203390806. PubMed PMID: 9709046
  3. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15:195-218. doi: 10.1208/s12248-012-9432-8. PubMed PMID: 23143785; PubMed Central PMCID: PMCPMC3535097.
  4. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel). 2023;11. doi: 10.3390/healthcare11131946. PubMed PMID: 37444780; PubMed Central PMCID: PMCPMC10340576.
  5. Sadeghizadeh M, Ranjbar B, Damaghi M, Khaki L, Sarbolouki MN, Najafi F, et al. Dendrosomes as novel gene porters-III. Journal of Chemical Technology & Biotechnology. 2008;83:912-20. doi: 10.1002/jctb.1891.
  6. Sadeghizadeh M, Asadollahi E, Jahangiri B, Yadollahzadeh M, Mohajeri M, Afsharpad M, et al. Promising clinical outcomes of nano-curcumin treatment as an adjunct therapy in hospitalized COVID-19 patients: A randomized, double-blinded, placebo-controlled trial. Phytother Res. 2023;37:3631-44. doi: 10.1002/ptr.7844. PubMed PMID: 37118944.
  7. Ebrahimi S, Sadeghizadeh M, Aghasadeghi MR, Ardestani MS, Amini SA, Vahabpour R. Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate dendrimer; a new nano formulation. BMC Complement Med Ther. 2024;24:350. doi: 10.1186/s12906-024-04634-8. PubMed PMID: 39358802; PubMed Central PMCID: PMCPMC11448447.
  8. CLSI M100 [Internet]. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. [Accessed October 8, 2024]. Available from: https://clsi.org/standards/products/microbiology/documents/m100/.
  9. Biolabs [Internet]. Tm Calculator. [Cited October 02, 2024]. Available from: https://tmcalculator.neb.com/#!/main.
  10. Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, et al. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine. 2014;9:403-17. doi: 10.2147/IJN.S48136. PubMed PMID: 24531649; PubMed Central PMCID: PMCPMC3894954.
  11. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol. 2017;17:36. doi: 10.1186/s12866-017-0936-3. PubMed PMID: 28209130; PubMed Central PMCID: PMCPMC5314469.
  12. Ansari S, Gautam R, Shrestha S, Ansari SR, Subedi SN, Chhetri MR. Risk factors assessment for nasal colonization of Staphylococcus aureus and its methicillin resistant strains among pre-clinical medical students of Nepal. BMC Res Notes. 2016;9:214. doi: 10.1186/s13104-016-2021-7. PubMed PMID: 27068121; PubMed Central PMCID: PMCPMC4828777.
  13. Wu M, Tong X, Liu S, Wang D, Wang L, Fan H. Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: A system review and meta-analysis. PLoS One. 2019;14:e0223599. doi: 10.1371/journal.pone.0223599. PubMed PMID: 31647842; PubMed Central PMCID: PMCPMC6812772.
  14. Abo-Amer AE, Gad El-Rab SMF, Halawani EM, Niaz AM, Bamaga MS. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications. J Microbiol Biotechnol. 2022;32:1537-46. doi: 10.4014/jmb.2208.08004. PubMed PMID: 36379700; PubMed Central PMCID: PMCPMC9843750.
  15. Goudarzi M, Razeghi M, Chirani AS, Fazeli M, Tayebi Z, Pouriran R. Characteristics of methicillin-resistant Staphylococcus aureus carrying the toxic shock syndrome toxin gene: high prevalence of clonal complex 22 strains and the emergence of new spa types t223 and t605 in Iran. New Microbes New Infect. 2020;36:100695. doi: 10.1016/j.nmni.2020.100695. PubMed PMID: 32518656; PubMed Central PMCID: PMCPMC7270607.
  16. Hamzah Abdulrahman S, lt, sup, gt, *, lt, et al. Prevalence of Multi-Antibiotic Resistant Bacteria Isolated from Children with Urinary Tract Infection from Baghdad, Iraq. Microbiology and Biotechnology Letters. 2022;50:147-56. doi: 10.48022/mbl.2110.10011.
  17. Rasmi AH, Ahmed EF, Darwish AMA, Gad GFM. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. BMC Infect Dis. 2022;22:652. doi: 10.1186/s12879-022-07624-8. PubMed PMID: 35902813; PubMed Central PMCID: PMCPMC9547454.
  18. Jafari-Sales A, Jafari B. Evaluation of the Prevalence of mec A Gene in Staphylococcus aureus Strains Isolated from Clinical Specimens of Hospitals and Treatment Centers. Pajouhan Scientific Journal. 2019;17:41-7. doi: 10.52547/psj.17.3.41.
  19. Al-Ashmawy MA, Sallam KI, Abd-Elghany SM, Elhadidy M, Tamura T. Prevalence, Molecular Characterization, and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Isolated from Milk and Dairy Products. Foodborne Pathog Dis. 2016;13:156-62. doi: 10.1089/fpd.2015.2038. PubMed PMID: 26836943.
  20. Taiwo SS, Onile BA, Akanbi Ii AA. Methicillin-Resistant Staphylococcus Aureus (MRSA) Isolates in Ilorin, Nigeria. African Journal of Clinical and Experimental Microbiology. 2004;5:189-97. doi: 10.4314/ajcem.v5i2.7376.
  21. Tokue Y, Shoji S, Satoh K, Watanabe A, Motomiya M. Comparison of a polymerase chain reaction assay and a conventional microbiologic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1992;36:6-9. doi: 10.1128/AAC.36.1.6. PubMed PMID: 1590701; PubMed Central PMCID: PMCPMC189217.
  22. Dicle Y, Yazgi H, Coşkun MV, Topalcengiz Z. Synergistic antibacterial effect of ciprofloxacin and green tea extract on methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical cases. Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji. 2022;79. doi: 10.5505/turkhijyen.2022.90532.
  23. Vazquez-Rosas GJ, Merida-Vieyra J, Aparicio-Ozores G, Lara-Hernandez A, De Colsa A, Aquino-Andrade A. Molecular Characterization of Staphylococcus aureus Obtained from Blood Cultures of Paediatric Patients Treated in a Tertiary Care Hospital in Mexico. Infect Drug Resist. 2021;14:1545-56. doi: 10.2147/IDR.S302416. PubMed PMID: 33911882; PubMed Central PMCID: PMCPMC8071697.
  24. Idrees MM, Saeed K, Shahid MA, Akhtar M, Qammar K, Hassan J, et al. Prevalence of mecA- and mecC-Associated Methicillin-Resistant Staphylococcus aureus in Clinical Specimens, Punjab, Pakistan. Biomedicines. 2023;11. doi: 10.3390/biomedicines11030878. PubMed PMID: 36979857; PubMed Central PMCID: PMCPMC10045897.
  25. Setiabudy M, Adhiputra IKAI, Agus Eka D, Ni Nengah Dwi F. Correlation Between icaA/B/C/D Gene and Biofilm Formation in Staphylococcus aureus Infection. Jurnal Kedokteran: Media Informasi Ilmu Kedokteran dan Kesehatan. 2023;9:15-22. doi: 10.36679/kedokteran.v9i1.39.
  26. Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23-36. doi: 10.1038/s41579-020-0420-1. PubMed PMID: 32814862; PubMed Central PMCID: PMCPMC8559572.
  27. Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A. 2010;107:13473-8. doi: 10.1073/pnas.1001815107. PubMed PMID: 20624979; PubMed Central PMCID: PMCPMC2922128.
  28. Bhatta DR, Cavaco LM, Nath G, Kumar K, Gaur A, Gokhale S, et al. Association of Panton Valentine Leukocidin (PVL) genes with methicillin resistant Staphylococcus aureus (MRSA) in Western Nepal: a matter of concern for community infections (a hospital based prospective study). BMC Infect Dis. 2016;16:199. doi: 10.1186/s12879-016-1531-1. PubMed PMID: 27179682; PubMed Central PMCID: PMCPMC4867903.
  29. Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol. 2020;11:2054. doi: 10.3389/fmicb.2020.02054. PubMed PMID: 32983039; PubMed Central PMCID: PMCPMC7480013.
  30. Naji Hasan R, Abdal Kareem Jasim S. Detection of Panton-Valentine leukocidin and MecA Genes in Staphylococcus aureus isolated from Iraqi Patients. Arch Razi Inst. 2021;76:1054-9. doi: 10.22092/ari.2021.355962.1751. PubMed PMID: 35096341; PubMed Central PMCID: PMCPMC8790979.
  31. Aggarwal S, Jena S, Panda S, Sharma S, Dhawan B, Nath G, et al. Antibiotic Susceptibility, Virulence Pattern, and Typing of Staphylococcus aureus Strains Isolated From Variety of Infections in India. Front Microbiol. 2019;10:2763. doi: 10.3389/fmicb.2019.02763. PubMed PMID: 31866962; PubMed Central PMCID: PMCPMC6904308.
  32. Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, et al. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. Elife. 2018;7. doi: 10.7554/eLife.38856. PubMed PMID: 30277210; PubMed Central PMCID: PMCPMC6168285.