Document Type : Original Article(s)
Authors
- Syafruddin Ilyas 1
- Putri Cahaya Situmorang 1
- Hafandi Ahmad 2
- Dina Khairani 1
- Dini Prastyo Wati 1
- Wardah Sawitri Polem 1
1 Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
2 Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, University of Putra Malaysia, Selangor, Malaysia
Abstract
Background: Traumatic brain injury (TBI) is a major global health burden and one of the leading causes of death and disability worldwide, affecting up to 74 million people annually. It profoundly impairs mental health, quality of life, and daily functioning. This study aimed to explore the therapeutic potential of nanoherbal compounds from Paraboea leuserensis using combined in silico and in vivo approaches in a rat model of TBI.
Methods: In the in silico phase, bioactive compounds from Paraboea leuserensis leaves identified by Gas Chromatography–Mass Spectrometry (GC-MS) were screened through molecular docking to assess their binding affinity and pharmacokinetic properties. For the in vivo study, 30 male Wistar rats were allocated into six groups: G0 (normal control), G+(TBI control), MP (TBI+methylprednisolone 30 mg/Kg BW), and treatment groups PL100, PL200, and PL300 (TBI+nanoherbal extract at 100, 200, and 300 mg/Kg BW, respectively). Antioxidant activity was evaluated through superoxide dismutase (SOD) and malondialdehyde (MDA) assays. Data were analyzed by one-way ANOVA with Tukey’s post hoc test (P<0.05) using GraphPad Prism.
Results: GC-MS analysis revealed bioactive compounds with favorable pharmacokinetic properties. Molecular docking showed strong interactions of 9-octadecen-12-ynoic acid methyl ester with ERK2 and CCR2, while 9-octadecenoic acid (Z) displayed notable binding to JNK3. In vivo, PL100 (P<0.01), PL200 (P<0.001), and PL300 (P<0.0001) significantly enhanced SOD activity and reduced MDA levels compared to the TBI control.
Conclusion: Both in silico and in vivo findings highlight the neuroprotective potential of Paraboea leuserensis, with PL300 showing the most pronounced antioxidant effect in TBI-induced rats.
Highlights
Syafruddin Ilyas (Google Scholar)
Keywords
- Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130:1080-97. doi: 10.3171/2017.10.JNS17352. PubMed PMID: 29701556.
- Howlett JR, Nelson LD, Stein MB. Mental Health Consequences of Traumatic Brain Injury. Biol Psychiatry. 2022;91:413-20. doi: 10.1016/j.biopsych.2021.09.024. PubMed PMID: 34893317; PubMed Central PMCID: PMCPMC8849136.
- Injury GBDTB, Spinal Cord Injury C. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:56-87. doi: 10.1016/S1474-4422(18)30415-0. PubMed PMID: 30497965; PubMed Central PMCID: PMCPMC6291456.
- Polinder S, Cnossen MC, Real RGL, Covic A, Gorbunova A, Voormolen DC, et al. A Multidimensional Approach to Post-concussion Symptoms in Mild Traumatic Brain Injury. Front Neurol. 2018;9:1113. doi: 10.3389/fneur.2018.01113. PubMed PMID: 30619066; PubMed Central PMCID: PMCPMC6306025.
- Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis. 2021;148:105210. doi: 10.1016/j.nbd.2020.105210. PubMed PMID: 33259894; PubMed Central PMCID: PMCPMC7847277.
- Morganti JM, Riparip LK, Chou A, Liu S, Gupta N, Rosi S. Age exacerbates the CCR2/5-mediated neuroinflammatory response to traumatic brain injury. J Neuroinflammation. 2016;13:80. doi: 10.1186/s12974-016-0547-1. PubMed PMID: 27090212; PubMed Central PMCID: PMCPMC4835854.
- Wu Y, Zhao Y, Guan Z, Esmaeili S, Xiao Z, Kuriakose D. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Cell Adh Migr. 2024;18:1-11. doi: 10.1080/19336918.2024.2316576. PubMed PMID: 38357988; PubMed Central PMCID: PMCPMC10878020.
- Musi CA, Agro G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells. 2020;9. doi: 10.3390/cells9102190. PubMed PMID: 32998477; PubMed Central PMCID: PMCPMC7600688.
- Bhowmick S, D’Mello V, Muneer PMA. Synergistic Inhibition of ERK1/2 and JNK, Not p38, Phosphorylation Ameliorates Neuronal Damages After Traumatic Brain Injury. Mol Neurobiol. 2019;56:1124-36. doi: 10.1007/s12035-018-1132-7. PubMed PMID: 29873042.
- Jarrahi A, Braun M, Ahluwalia M, Gupta RV, Wilson M, Munie S, et al. Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines. 2020;8. doi: 10.3390/biomedicines8100389. PubMed PMID: 33003373; PubMed Central PMCID: PMCPMC7601301.
- Mehta J, Rolta R, Mehta BB, Kaushik N, Choi EH, Kaushik NK. Role of Dexamethasone and Methylprednisolone Corticosteroids in Coronavirus Disease 2019 Hospitalized Patients: A Review. Front Microbiol. 2022;13:813358. doi: 10.3389/fmicb.2022.813358. PubMed PMID: 35242118; PubMed Central PMCID: PMCPMC8886296.
- Chen X, Zhang B, Chai Y, Dong B, Lei P, Jiang R, et al. Methylprednisolone exacerbates acute critical illness-related corticosteroid insufficiency associated with traumatic brain injury in rats. Brain Res. 2011;1382:298-307. doi: 10.1016/j.brainres.2011.01.045. PubMed PMID: 21262204.
- Danielson M, Reinsfelt B, Westerlind A, Zetterberg H, Blennow K, Ricksten SE. Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery-a randomized trial. J Neuroinflammation. 2018;15:283. doi: 10.1186/s12974-018-1318-y. PubMed PMID: 30261896; PubMed Central PMCID: PMCPMC6158839.
- Yulug B, Kilic E, Altunay S, Ersavas C, Orhan C, Dalay A, et al. Cinnamon Polyphenol Extract Exerts Neuroprotective Activity in Traumatic Brain Injury in Male Mice. CNS Neurol Disord Drug Targets. 2018;17:439-47. doi: 10.2174/1871527317666180501110918. PubMed PMID: 29714150.
- Khaksari M, Shahryari M, Raji-Amirhasani A, Soltani Z, Bibak B, Keshavarzi Z, et al. Aloe vera Leaf Extract Reduced BBB Permeability and Improved Neurological Results after Traumatic Brain Injury: The Role of Oxidative Stress. Oxid Med Cell Longev. 2024;2024:5586814. doi: 10.1155/2024/5586814. PubMed PMID: 39040520; PubMed Central PMCID: PMCPMC11262876.
- Puglisi C, Yao TL, Milne R, Möller M, Middleton DJ. Generic recircumscription in the Loxocarpinae (Gesneriaceae), as inferred by phylogenetic and morphological data. TAXON. 2016;65:277-92. doi: 10.12705/652.5.
- Purba EC, Silalahi M. The ethnomedicine of the Batak Karo people of Merdeka sub-district, North Sumatra, Indonesia. International Journal of Biological Research. 2016;4:181-9. doi: 10.14419/ijbr.v4i2.6493.
- Ginting KB, Purwoko A, Simanjuntak J. Kearifan Lokal Dalam Pengelolaan Hutan di Desa Serdang Kecamatan Barusjahe, Kabupaten karo. Peronema Forestry Science Journal. 2015;4:186-99.
- Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel). 2023;12. doi: 10.3390/antiox12020280. PubMed PMID: 36829840; PubMed Central PMCID: PMCPMC9951959.
- Ibrahim H, Uttu AJ, Sallau MS, Iyun ORA. Gas chromatography–mass spectrometry (GC–MS) analysis of ethyl acetate root bark extract of Strychnos innocua (Delile). Beni-Suef University Journal of Basic and Applied Sciences. 2021;10:65. doi: 10.1186/s43088-021-00156-1.
- Khairani D, Ilyas S, Wati DP. Molecular Docking and Pharmacokinetic Evaluation of Nanoherbal Senduduk Bulu (Miconia Crenata (Vahl.) Michelang.) Compounds As AKT1 Inhibitors. Int J App Pharm. 2025;17:90-103. doi: 10.22159/ijap.2025v17i2.52932.
- Padmi H, Kharisma VD, Ansori ANM, Sibero MT, Widyananda MH, Ullah ME, et al. Macroalgae bioactive compounds for the potential antiviral of SARS-CoV-2: An in silico study. J Pure Appl Microbiol. 2022;16:1018-27. doi: 10.22207/JPAM.16.2.26.
- Wati DP, Ilyas S, Khairani D. In Silico Study of Compounds from Nanoherbal Jopan (Clibadium surinamense L.) Leaves as Inhibitors AKT1 Interaction. Trends in Sciences. 2024;22:8729. doi: 10.48048/tis.2024.8729.
- Köhler T, Gutacker A, Mejía E. Industrial synthesis of reactive silicones: reaction mechanisms and processes. Organic Chemistry Frontiers. 2020;7:4108-20. doi: 10.1039/D0QO01075H.
- Ferreri C, Masi A, Sansone A, Giacometti G, Larocca AV, Menounou G, et al. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics (Basel). 2016;7. doi: 10.3390/diagnostics7010001. PubMed PMID: 28025506; PubMed Central PMCID: PMCPMC5373010.
- Santa-Maria C, Lopez-Enriquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, et al. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients. 2023;15. doi: 10.3390/nu15010224. PubMed PMID: 36615882; PubMed Central PMCID: PMCPMC9824542.
- Meng Q, Liu H, Wu H, Shun D, Tang C, Fu X, et al. A Network Pharmacology Study to Explore the Underlying Mechanism of Safflower (Carthamus tinctorius L.) in the Treatment of Coronary Heart Disease. Evid Based Complement Alternat Med. 2022;2022:3242015. doi: 10.1155/2022/3242015. PubMed PMID: 35607519; PubMed Central PMCID: PMCPMC9124127.
- Hermanson GT. Chapter 13 - Silane Coupling Agents. In: Hermanson GT, editor. Bioconjugate Techniques (Second Edition). New York: Academic Press; 2008. p. 562-81. doi: 10.1016/B978-0-12-370501-3.00013-8.
- Preeti, Sambhakar S, Saharan R, Narwal S, Malik R, Gahlot V, et al. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm J. 2023;31:101870. doi: 10.1016/j.jsps.2023.101870. PubMed PMID: 38053738; PubMed Central PMCID: PMCPMC10694332.
- Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, et al. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics. 2023;15. doi: 10.3390/pharmaceutics15030772. PubMed PMID: 36986633; PubMed Central PMCID: PMCPMC10058399.
- Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880-5. doi: 10.1016/0006-291x(91)91647-u. PubMed PMID: 1673839.
- Gonzalez E, Jain S, Shah P, Torimoto-Katori N, Zakharov A, Nguyen Eth T, et al. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metab Dispos. 2021;49:822-32. doi: 10.1124/dmd.120.000320. PubMed PMID: 34183376; PubMed Central PMCID: PMCPMC11022912.
- Magliocco G, Desmeules J, Matthey A, Quiros-Guerrero LM, Bararpour N, Joye T, et al. Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity. Br J Pharmacol. 2021;178:4708-25. doi: 10.1111/bph.15651. PubMed PMID: 34363609; PubMed Central PMCID: PMCPMC9290485.
- Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11:1117-21. doi: 10.1002/cmdc.201600182. PubMed PMID: 27218427; PubMed Central PMCID: PMCPMC5089604.
- Nawafleh S, Qaswal AB, Suleiman A, Alali O, Zayed FM, Al-Adwan MAO, et al. GABA Receptors Can Depolarize the Neuronal Membrane Potential via Quantum Tunneling of Chloride Ions: A Quantum Mathematical Study. Cells. 2022;11. doi: 10.3390/cells11071145. PubMed PMID: 35406709; PubMed Central PMCID: PMCPMC8998136.
- Bramlett HM, Dietrich WD. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma. 2015;32:1834-48. doi: 10.1089/neu.2014.3352. PubMed PMID: 25158206; PubMed Central PMCID: PMCPMC4677116.
- Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti J. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? Biology (Basel). 2023;12. doi: 10.3390/biology12081139. PubMed PMID: 37627023; PubMed Central PMCID: PMCPMC10452099.
- Sachdev KR, Lynch KJ, Barreto GE. Exploration of novel ligands to target C-C Motif Chemokine Receptor 2 (CCR2) as a promising pharmacological treatment against traumatic brain injury. Biomed Pharmacother. 2022;151:113155. doi: 10.1016/j.biopha.2022.113155. PubMed PMID: 35598371.
- Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci. 2022;23. doi: 10.3390/ijms232113000. PubMed PMID: 36361792; PubMed Central PMCID: PMCPMC9657447.
- Liu MD, Luo P, Wang ZJ, Fei Z. Changes of serum Tau, GFAP, TNF-alpha and malonaldehyde after blast-related traumatic brain injury. Chin J Traumatol. 2014;17:317-22. PubMed PMID: 25471424.