Document Type : Original Article(s)
Authors
- Mohadeseh Khoshandam 1
- Mohammad Rahmanian 2, 3
- Mohammad Taghi Hedayati Goudarzi 4
- Hossein Soltaninejad 5
- Sadegh Babashah 6
- Mahdiye Khoshandam 7
1 Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
2 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Department of Cardiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
5 Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
6 Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
7 Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
Abstract
Background: Breast cancer is the most common form of cancer among women worldwide, and the rates of both new cases and deaths have increased over the past two decades. The aim of the study was to identify and validate molecular pathways that could potentially be targeted for therapeutic interventions.
Methods: The bioinformatics resource WebGestalt was used to determine the functional annotation of the Gene Ontology, as well as enrichment analysis of Reactome and KEGG pathways in 2023-2024. GeneMANIA, a server for assessing protein-gene interactions, co-localization, pathways, co-expression, and protein-domain similarity of target genes and their interacting genes, was evaluated via this web tool. GEO was also used to determine mRNA expression levels in BRCA individuals. R packages were used to screen for differentially expressed genes for both datasets. On the other hand, the open cancer resources GENT2 TNMPlot, UCSCXena, ENCORI platform, BioXpress, OncoDB, OncoMX, and GEPIA2 were used to measure the differential expression of mRNAs in BRCA patients.
Results: Among the genes analyzed, matrix metalloproteinase-9 (MMP9) showed the greatest change. Similarly, matrix metallopeptidase 14 (MMP14) and Endogenous Vascular Endothelial Growth Factor-A (VEGFA) showed significant increases. Other up-regulated genes, including Apolipoprotein E (APOE), Hypoxia-Inducible Factor-1 Alpha (HIF1A), and Tumor Necrosis Factor (TNF) showed minimal expression changes with minor fluctuations. Finally, Interleukin-1 alpha precursor (IL1A) exhibited a slight increase in expression. Validation of gene expression changes through microarray studies on the GSE37751 and GSE42568 datasets provided consistent and significant results for several of the studied genes. GO analysis further revealed significant molecular functions, cellular components, KEGG pathways, and biological processes that were enriched among the differentially expressed genes. Among the top pathways identified based on FDR and P value were receptor binding signaling, regulation of cell migration, the extracellular matrix, and the AGE-RAGE signaling pathway.
Conclusion: The results predict that the hub genes correlated with angiogenesis may serve as potential therapeutic targets or could be biomarkers for breast cancer.
Highlights
Mohadeseh Khoshandam (Google Scholar)
Hossein Soltaninejad (Google Scholar)
Keywords
- Khoshandam M, Soheili ZS, Hosseinkhani S, Samiee S, Latifi-Navid H, Ahmadieh H, et al. In vivo inhibition of angiogenesis by htsFLT01/MiRGD nano complex. Transl Oncol. 2025;56:102400. doi: 10.1016/j.tranon.2025.102400. PubMed PMID: 40306151; PubMed Central PMCID: PMC12434996.
- Wu B, Li Y, Shi B, Zhang X, Lai Y, Cui F, et al. Temporal trends of breast cancer burden in the Western Pacific Region from 1990 to 2044: Implications from the Global Burden of Disease Study 2019. J Adv Res. 2024;59:189-99. doi: 10.1016/j.jare.2023.07.003. PubMed PMID: 37422280; PubMed Central PMCID: PMC11082062.
- Cherny NI, Paluch-Shimon S, Berner-Wygoda Y. Palliative care: needs of advanced breast cancer patients. Breast Cancer (Dove Med Press). 2018;10:231-43. doi: 10.2147/BCTT.S160462. PubMed PMID: 30584354; PubMed Central PMCID: PMC6284851.
- DeBerardinis RJ. Tumor Microenvironment, Metabolism, and Immunotherapy. N Engl J Med. 2020;382:869-71. doi: 10.1056/NEJMcibr1914890. PubMed PMID: 32101671.
- Manning D, Rivera EJ, Santana LF. The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol. 2024;156:107393. doi: 10.1016/j.vph.2024.107393. PubMed PMID: 38857638; PubMed Central PMCID: PMC12051481.
- Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P, Rao G. VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 2024;1879:189079. doi: 10.1016/j.bbcan.2024.189079. PubMed PMID: 38280470.
- Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci. 2022;79:349. doi: 10.1007/s00018-022-04348-5. PubMed PMID: 35672585; PubMed Central PMCID: PMC10171722.
- Sriharikrishnaa S, Suresh PS, Prasada KS. An introduction to fundamentals of cancer biology. In: Optical Polarimetric Modalities for Biomedical Research. Cham: Springer; 2023. p. 307-30. doi: 10.1007/978-3-031-31852-8_11.
- Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198. doi: 10.1038/s41392-023-01460-1. PubMed PMID: 37169756; PubMed Central PMCID: PMC10175505.
- Perez-Gutierrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023;24:816-34. doi: 10.1038/s41580-023-00631-w. PubMed PMID: 37491579.
- Arya KR, Bharath Chand RP, Abhinand CS, Nair AS, Oommen OV, Sudhakaran PR. Identification of Hub Genes and Key Pathways Associated with Anti-VEGF Resistant Glioblastoma Using Gene Expression Data Analysis. Biomolecules. 2021;11. doi: 10.3390/biom11030403. PubMed PMID: 33803224; PubMed Central PMCID: PMC8000064.
- Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol. 2023;504:58-74. doi: 10.1016/j.ydbio.2023.09.009. PubMed PMID: 37739118.
- Kaddoura R, Alqutami F, Asbaita M, Hachim M. In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life (Basel). 2023;13. doi: 10.3390/life13020422. PubMed PMID: 36836779; PubMed Central PMCID: PMC9965976.
- Khoshandam M, Soheili ZS, Hosseinkhani S, Samiee S, Latifi-Navid H, Kalhor N, et al. Leveraging the htsFLT01/MiRGD Complex to Enhance Apoptosis and Suppress Angiogenesis in MCF7 Breast Cancer Cells. Iran J Med Sci. 2025;50:707-12. doi: 10.30476/ijms.2025.105176.3884. PubMed PMID: 41158839; PubMed Central PMCID: PMC12557347.
- Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol. 2022;12:1108695. doi: 10.3389/fonc.2022.1108695. PubMed PMID: 36741729; PubMed Central PMCID: PMC9897057.
- Luchian I, Goriuc A, Sandu D, Covasa M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int J Mol Sci. 2022;23. doi: 10.3390/ijms23031806. PubMed PMID: 35163727; PubMed Central PMCID: PMC8837018.
- Eugeniu C, Eremei Z, Claudiu M, Radu N, Ruslan P. Immunoexpression of matrix metalloproteinases MMP-1, MMP-2, MMP-9 and MMP-14 in extragenital endometriosis and eutopic endometrium. Mold Med J. 2020;63:6-11.
- Liu W, Lu X, Shi P, Yang G, Zhou Z, Li W, et al. TNF-alpha increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-kappaB pathway. Sci Rep. 2020;10:1804. doi: 10.1038/s41598-020-58642-y. PubMed PMID: 32019974; PubMed Central PMCID: PMC7000832.
- Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, et al. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (2020). 2024;5:e676. doi: 10.1002/mco2.676. PubMed PMID: 39092291; PubMed Central PMCID: PMC11292401.
- Lopez de Andres J, Grinan-Lison C, Jimenez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol. 2020;13:136. doi: 10.1186/s13045-020-00966-3. PubMed PMID: 33059744; PubMed Central PMCID: PMC7559894.
- Chen J, Zhu H, Chen S, Mi H. Apolipoprotein E is a Potential Biomarker for Predicting Cancer Prognosis and is Correlated with Immune Infiltration. Onco Targets Ther. 2024;17:199-214. doi: 10.2147/OTT.S447319. PubMed PMID: 38523659; PubMed Central PMCID: PMC10960509.
- Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, et al. Tumor Cell-Associated IL-1alpha Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci. 2024;25. doi: 10.3390/ijms25073950. PubMed PMID: 38612760; PubMed Central PMCID: PMC11011794.
- Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel). 2019;11. doi: 10.3390/cancers11101618. PubMed PMID: 31652660; PubMed Central PMCID: PMC6827047.
- Lee S, Rauch J, Kolch W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21031102. PubMed PMID: 32046099; PubMed Central PMCID: PMC7037308.
- Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8:455. doi: 10.1038/s41392-023-01705-z. PubMed PMID: 38105263; PubMed Central PMCID: PMC10725898.
- Acosta-Ramos E, Segovia-Mendoza M, Olivares-Reyes JA. Growth Factor Receptor Implications. Breast Cancer Treatment: An Interdisciplinary Approach. 2024;7:237. doi: 10.1007/16833_2024_281.
- Baghel VS, Shinde S, Dixit V, et al. Dysregulated cell-signaling pathways in hepatocellular carcinoma: causes and therapeutic options. In: Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 2. Amsterdam: Elsevier; 2022. p. 337-55. doi: 10.1016/B978-0-323-98807-0.00009-0.
- Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17:676-91. doi: 10.1038/nrc.2017.79. PubMed PMID: 28984291; PubMed Central PMCID: PMC6000833.
- Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, et al. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol. 2024;18:1355-77. doi: 10.1002/1878-0261.13605. PubMed PMID: 38362705; PubMed Central PMCID: PMC11161739.
- Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact. 2024;396:111055. doi: 10.1016/j.cbi.2024.111055. PubMed PMID: 38763348.
- Lian S, Du Z, Chen Q, Xia Y, Miao X, Yu W, et al. From lab to clinic: The discovery and optimization journey of PI3K inhibitors. Eur J Med Chem. 2024;277:116786. doi: 10.1016/j.ejmech.2024.116786. PubMed PMID: 39180946.
- Wong AHN, Ma B, Lui RN. New developments in targeted therapy for metastatic colorectal cancer. Ther Adv Med Oncol. 2023;15:17588359221148540. doi: 10.1177/17588359221148540. PubMed PMID: 36687386; PubMed Central PMCID: PMC9846305.
- Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, et al. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel). 2024;17. doi: 10.3390/ph17020195. PubMed PMID: 38399410; PubMed Central PMCID: PMC10892333.
- Li Z, Wei R, Yao S, Meng F, Kong L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon. 2024;10:e24664. doi: 10.1016/j.heliyon.2024.e24664. PubMed PMID: 38298716; PubMed Central PMCID: PMC10828096.
- Sun H, Li Y, Zhang Y, Zhao X, Dong X, Guo Y, et al. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front Immunol. 2022;13:1042835. doi: 10.3389/fimmu.2022.1042835. PubMed PMID: 36685583; PubMed Central PMCID: PMC9846556.
- Dai H, Sheng X, Wang Y, Zhou L, Lin Y, Du Y, et al. HIF1alpha Regulates IL17 Signaling Pathway Influencing Sensitivity of Taxane-Based Chemotherapy for Breast Cancer. Front Cell Dev Biol. 2021;9:729965. doi: 10.3389/fcell.2021.729965. PubMed PMID: 34595177; PubMed Central PMCID: PMC8476907.
- Chen X, Zhao J, Herjan T, Hong L, Liao Y, Liu C, et al. IL-17-induced HIF1alpha drives resistance to anti-PD-L1 via fibroblast-mediated immune exclusion. J Exp Med. 2022;219. doi: 10.1084/jem.20210693. PubMed PMID: 35389431; PubMed Central PMCID: PMC8996325.
- Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, et al. The role of NF-kappaB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother. 2023;163:114822. doi: 10.1016/j.biopha.2023.114822. PubMed PMID: 37146418.
- Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-kappaB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9:53. doi: 10.1038/s41392-024-01757-9. PubMed PMID: 38433280; PubMed Central PMCID: PMC10910037.
- Guo Q, Jin Y, Lin M, Zeng C, Zhang J. NF-kappaB signaling in therapy resistance of breast cancer: Mechanisms, approaches, and challenges. Life Sci. 2024;348:122684. doi: 10.1016/j.lfs.2024.122684. PubMed PMID: 38710275.
- Cao Y, Yi Y, Han C, Shi B. NF-kappaB signaling pathway in tumor microenvironment. Front Immunol. 2024;15:1476030. doi: 10.3389/fimmu.2024.1476030. PubMed PMID: 39493763; PubMed Central PMCID: PMC11530992.