Iranian Journal of Medical Sciences

Document Type: Original Article(s)


Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Guizhou, China


Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method.Methods: Sprague-Dawley rats (11–19 postnatal days, n=36) were used to obtain brain slices (300 μM). Spontaneous excitatory postsynaptic currents (data from 40 neurons) were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM) and strychnine (glycine receptor antagonist, 30 μM). Miniature excitatory postsynaptic currents (data from 40 neurons) were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant.Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.


  1. Schubert D, Kotter R, Staiger JF. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits. Brain Struct Funct. 2007;212:107-19. doi: 10.1007/s00429-007-0147-z. PubMed PMID: 17717691.
  2. Tu Y, Yu T, Fu XY, Xie P, Lu S, Huang XQ, et al. Altered thalamocortical functional connectivity by propofol anesthesia in rats. Pharmacology. 2011;88:322-6. doi: 10.1159/000334168. PubMed PMID: 22116025.
  3. Zhang Y, Li Z, Dong H, Yu T. Effects of general anesthesia with propofol on thalamocortical sensory processing in rats. J Pharmacol Sci. 2014;126:370-81. doi: 10.1254/jphs.14153FP. PubMed PMID: 25427432.
  4. Li Z, Liu X, Zhang Y, Shi J, Zhang Y, Xie P, et al. Connection changes in somatosensory cortex induced by different doses of propofol. PLoS One. 2014;9:e87829. doi: 10.1371/journal.pone.0087829. PubMed PMID: 24516566; PubMed Central PMCID: PMC3917837.
  5. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876-80. doi: 10.1126/science.1149213. PubMed PMID: 18988836; PubMed Central PMCID: PMC2743249.
  6. Chen X, Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci. 2009;29:600-9. doi: 10.1523/JNEUROSCI.3481-08.2009. PubMed PMID: 19158287; PubMed Central PMCID: PMC2744993.
  7. Simkus CR, Stricker C. Properties of mEPSCs recorded in layer II neurones of rat barrel cortex. J Physiol. 2002;545:509-20. doi: 10.1113/jphysiol.2002.022095. PubMed PMID: 12456830; PubMed Central PMCID: PMC2290708.
  8. He Q, Duguid I, Clark B, Panzanelli P, Patel B, Thomas P, et al. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nat Commun. 2015;6:7364. doi: 10.1038/ncomms8364. PubMed PMID: 26179122; PubMed Central PMCID: PMC4518301.
  9. Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:2681-6. doi: 10.1073/pnas.0913008107. PubMed PMID: 20133802; PubMed Central PMCID: PMC2823915.
  10. Purdon PL, Pierce ET, Bonmassar G, Walsh J, Harrell PG, Kwo J, et al. Simultaneous electroencephalography and functional magnetic resonance imaging of general anesthesia. Ann N Y Acad Sci. 2009;1157:61-70. doi: 10.1111/j.1749-6632.2008.04119.x. PubMed PMID: 19351356; PubMed Central PMCID: PMC2855224.
  11. Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis JM, et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology. 2007;107:202-12. doi: 10.1097/01.anes.0000270734.99298.b4. PubMed PMID: 17667563.
  12. Schlunzen L, Juul N, Hansen KV, Cold GE. Regional cerebral blood flow and glucose metabolism during propofol anaesthesia in healthy subjects studied with positron emission tomography. Acta Anaesthesiol Scand. 2012;56:248-55. doi: 10.1111/j.1399-6576.2011.02561.x. PubMed PMID: 22091956.
  13. Kaisti KK, Metsahonkala L, Teras M, Oikonen V, Aalto S, Jaaskelainen S, et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology. 2002;96:1358-70. doi: 10.1097/00000542-200206000-00015. PubMed PMID: 12170048.
  14. Sonner JM, Cantor RS. Molecular mechanisms of drug action: an emerging view. Annu Rev Biophys. 2013;42:143-67. doi: 10.1146/annurev-biophys-083012-130341. PubMed PMID: 23451895.
  15. Hemmings HC, Jr., Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26:503-10. doi: 10.1016/ PubMed PMID: 16126282.
  16. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5:709-20. doi: 10.1038/nrn1496. PubMed PMID: 15322529.
  17. Satake S, Imoto K. Cav2.1 channels control multivesicular release by relying on their distance from exocytotic Ca2+ sensors at rat cerebellar granule cells. J Neurosci. 2014;34:1462-74. doi: 10.1523/JNEUROSCI.2388-13.2014. PubMed PMID: 24453334.
  18. Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 2008;1129:105-18. doi: 10.1196/annals.1417.029. PubMed PMID: 18591473.
  19. MacIver MB. Anesthetic agent-specific effects on synaptic inhibition. Anesth Analg. 2014;119:558-69. doi: 10.1213/ANE.0000000000000321. PubMed PMID: 24977633; PubMed Central PMCID: PMC4139451.
  20. Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci U S A. 2012;109:E3377-86. doi: 10.1073/pnas.1210907109. PubMed PMID: 23129622; PubMed Central PMCID: PMC3523833.
  21. Alkire MT, Asher CD, Franciscus AM, Hahn EL. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology. 2009;110:766-73. doi: 10.1097/ALN.0b013e31819c461c. PubMed PMID: 19322942.
  22. Cheng G, Kendig JJ. Enflurane decreases glutamate neurotransmission to spinal cord motor neurons by both pre- and postsynaptic actions. Anesth Analg. 2003;96:1354-9. doi: 10.1213/01.ANE.0000055649.06649.D2. PubMed PMID: 12707133.
  23. Stoll L, Hall J, Van Buren N, Hall A, Knight L, Morgan A, et al. Differential regulation of ionotropic glutamate receptors. Biophys J. 2007;92:1343-9. doi: 10.1529/biophysj.106.089896. PubMed PMID: 17114218; PubMed Central PMCID: PMC1783868.
  24. Jeun SH, Cho HS, Kim KJ, Li QZ, Sung KW. Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum. Korean J Physiol Pharmacol. 2009;13:209-14. doi: 10.4196/kjpp.2009.13.3.209. PubMed PMID: 19885039; PubMed Central PMCID: PMC2766737.
  25. Campbell SL, Mathew SS, Hablitz JJ. Pre- and postsynaptic effects of kainate on layer II/III pyramidal cells in rat neocortex. Neuropharmacology. 2007;53:37-47. doi: 10.1016/j.neuropharm.2007.04.008. PubMed PMID: 17543353; PubMed Central PMCID: PMC2033380.
  26. Hanell A, Greer JE, Jacobs KM. Increased Network Excitability Due to Altered Synaptic Inputs to Neocortical Layer V Intact and Axotomized Pyramidal Neurons after Mild Traumatic Brain Injury. J Neurotrauma. 2015;32:1590-8. doi: 10.1089/neu.2014.3592. PubMed PMID: 25789412; PubMed Central PMCID: PMC4593977.
  27. Bergevin A, Girardot D, Bourque MJ, Trudeau LE. Presynaptic mu-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons. Neuropharmacology. 2002;42:1065-78. PubMed PMID: 12128008.
  28. Chau PL. New insights into the molecular mechanisms of general anaesthetics. Br J Pharmacol. 2010;161:288-307. doi: 10.1111/j.1476-5381.2010.00891.x. PubMed PMID: 20735416; PubMed Central PMCID: PMC2989583.
  29. Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron. 2002;34:255-64. doi: 10.1016/S0896-6273(02)00658-X. PubMed PMID: 11970867.
  30. Schnoebel R, Wolff M, Peters SC, Brau ME, Scholz A, Hempelmann G, et al. Ketamine impairs excitability in superficial dorsal horn neurones by blocking sodium and voltage-gated potassium currents. Br J Pharmacol. 2005;146:826-33. doi: 10.1038/sj.bjp.0706385. PubMed PMID: 16151436; PubMed Central PMCID: PMC1751212.
  31. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370-86. doi: 10.1038/nrn2372. PubMed PMID: 18425091.
  32. Leong D, Puil E, Schwarz D. Ketamine blocks non-N-methyl-D-aspartate receptor channels attenuating glutamatergic transmission in the auditory cortex. Acta Otolaryngol. 2004;124:454-8. PubMed PMID: 15224874.